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The Nation’s Priority Water Challenges Need New
Prediction Approaches
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talk. Fig credits: USGS Flood viewer,
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Research Objective

To determine watershed emergent properties -
resistance/resilience - to streamflow disturbances, and
predict impacts to water quality using a new, open
framework for data-driven analyses and modeling
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Driving Science Questions

S1: How do the intensity, duration, and frequency of
streamflow disturbance events change water quality
at a given location in the short and long-term?

S2: How far do disturbance-related water quality
changes propagate further downstream?

S3: How do the impacts of streamflow disturbances
on water quality vary across watersheds with different
characteristics of geomorphology, soil properties,
climate, land use, and land cover?

Watershed Resistance/Resilience Index = f (disturbance event,
watershed characteristics)
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Data-Intensive Approaches Used in Isolation;
Opportunity for Better Predictions with Integration

Classical Statistics on Long-Term
Monitoring Network Data
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Classification/Pattern Recognition
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Information Theory/Causal Inference
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Data-Driven Modeling
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My Approach: Integrating data-driven synthesis,
analysis and modeling in open framework

DATA ANALYTICAL FRAMEWORK
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Variable(s) Name of dataset Source
Discharge NWIS USGS
Water Quality |Water Quality Portal, |USGS,
Murphy & Sprague, EPA, USDA,
NWIS various
agencies
Topography, NHDPIlus HR USGS
Geomorphology,
River network
Land use/Land |NLCD USDA
Cover
Soil properties |SSURGO/STATSGO2 |USDA
Climate GHCN, PRISM, NOAA, Oregon
State Univ.
Disturbance LANDFIRE, Hydro
Disturbance Index
Integrated StreamCat, CAMELS, |USEPA,
products GAGES-II UCAR, other

datasets




Physical Information into ML Model Derived from
Analyses for Science Questions

S1: How do the intensity, duration, and frequency of streamflow disturbance
events change water quality at a given location in the short and long-term?

H1: Resistance H2: Resilience

(Chemostasis) H3: System Lag/Memory
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Early Work: Applying a Data Broker For Repeatable

Synthesis v ﬂ w "
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Early Work: ML
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Scientific, Technical, and Social Vision

Transferable concepts of impacts of
flow disturbances on water quality
to guide predictions in other
flood/drought-prone regions
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reproducible benchmark datasets will
be a foundation for an interagency
water quality prediction capability
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