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ExaSheds &

Advancing Watershed System Science using Machine
Learning and Data-Intensive Extreme-Scale Simulation

Interdisciplinary team (~15) across 4 labs

Exploring strategies for learning-assisted simulation

e development of model inputs from sparse, coarse, and
indirectly related information

* hybridization of process-resolving simulations and ML

Working with data from . . ) LA
* East River, Colorado, Watershed LI A
* Upper Colorado Water Resources Region
e Continental US
* Delaware River Basin

Adapting DOE-developed watershed
simulation tools to leadership-class
computer architectures
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6 Year Vision: A novel multiscale strategy fusing
process-resolving simulations and machine learning

 Tightly integrated role for machine learning
* Synthesizing spatially distributed model inputs from diverse data streams
 Inverse modeling/parameter identification
» Surrogate models trained on process-rich simulations

* Machine learning used to “refine” the output of process-based simulations
» Feedback of modeling to distributed sensor networks

* Process-explicit integrated surface/subsurface flow and reactive transport codes
» Represent biogeochemical processes and their hydrologic controls at their native scales
« Adapt to heterogeneous leadership-class architectures, providing path to exascale
* High throughput on leadership-class facilities will facilitate model-data integration

- Open source community resources for ML-assisted high-resolution simulation
» GPU-capable versions of ATS and Crunch

* Application-specific, python-based ML tools
« Workflows and tutorials
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Machine learning can assist high-resolution simulation by
helping to develop model inputs
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Machine learning can assist high-resolution simulation by replacing
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inverse modeling
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Estimation of model parameters from stream
discharge: Machine learning as an alternative to inverse

modeling
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Hybrid simulation capability where
machine learning refines output of

process-based simulations
New hybrid model outperforms 4.
process-based hydrology model and ’
pure data-driven approach 407 :
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Hydrobiogeochemical simulation capability for

heterogeneous architectures
* ML-based data-model integration at scale requires higher computational

throughput

* Prototyping Amanzi-ATS implementation using Kokkos abstraction layer
e Required simultaneous adoption of Kokkos data and execution models

* Proof-of-concept simulations solving Richards Alquimia
equation onGPU-based Summit supercomputer : ,
. . . Amanzi-ATS [€>,€> Crunch
* Preparing Crunch biogeochemical ) .
reaction engine for heterogeneous Tpetra :
architectures y
. . _ Kokkos 2.0
i Prof|l|ng, refactorlng, and ana|y2|ng - performance portability for C++ applications —
performance of existing version
* Design and preliminary implementation of ﬂ o

C++ version

Multi-Core Many-Core APU CPU+GPU



Looking forward — renewal proposal in preparation

e Use cases will make use of USGS NGWOS and BER-supported data
* Water availability in UCWRR
* Water temperature and salinity intrusion in Delaware River Basin

e Refine and continue testing ML-based downscaling and inverse
modeling, including extension to water temperature

* Continue testing our hybrid simulation capability
e ATS-LSTM hydrology simulation capability focusing on non-stationary climate
* Develop analogous hybrid capability for reactive transport

* Performance-portable ATS and CrunchFlow

* Scale to basin scales using multiscale algorithms that exploit
watershed-based domain decomposition



Looking forward — renewal proposal in preparation
e Use cases will make use of USGS NGWOS and BER-supported data in

UCWRR

e Water availability in

basin-scale simulations
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