ESS-DIVE: A DOE Earth and Environmental Data Repository

http://ess-dive.lbl.gov

Deb Agarwal, Charuleka Varadharajan, Shreyas Cholia, Cory Snavely, Valerie Hendrix, Joan Damerow, Fianna O'Brien, Hesham Elbashandy, Makayla Shepard, Bill Riley, Madison Burrus, Zarine Kakalia, Emily Robles, Maegen Simmonds, and Karen Whitenack

ESS-DIVE Deep Insight for Earth Science Data

The ESS-DIVE Team

Data Scientists and Software engineers

Digital Librarians

U.S. DEPARTMENT OF Office of Science

Coordinator: Karen Whitenack

Environmental Scientists

NCEAS

ESS-DIVE: a repository serving ESS data

• Key goals

1. Broad partnership with the ESS community on repository capabilities and features

2. Robust repository that provides long-term curation of ESS data

3. Data that is Findable, Accessible, Interoperable, and Reusable

4

Community Engagement Activities

- Gathered ESS project requirements through: Site visits, monthly webinars, advisory groups
- Data and metadata standards development in partnership with community
- Demos and tutorials
- Representing ESS data activities in conferences/meetings

Over 60 national and international meetings plus site visits to major ESS projects (3 years)

Submitting data: web portal and programmatic

- Upload data and metadata to create a data package via web page or programmatic interface (API)
- Release data packages publicly with a digital object identifier (DOI)
- Data usage licensing CCby4 and CC0
- Preview features on <u>http://data-</u> <u>sandbox.ess-dive.lbl.gov</u>

377 data packages published (3 years)

Deep Inst	S-DIVE ht for Earth Science Data	DATA	SUPPORT	ABOUT	Submit Data	🛔 - DEBORAH					
Untitled dataset.	Untitled dataset. null. ess-dive-1d96557676fa48d-20180429T132138224.										
To submit a new dat 1. Add files 2. Enter the require 3. Hit the submit bit	a package or make major revisions to an existing data pr ad * fields in the sections below utton, which appears after the first metadata entry	ackage									
F	iles		Siz	e	Туре	Status					
🗸 🖕 🛛 U	ntitled dataset					+ Add Files					
	Add files to start your dataset										
Overview *	Overview	Ţ									
People	Title * A brief but meaningful title for this data package. A good title includes the topic, geographic location,	dates, and scale of	of the data.								
Dates	Example: Sapflow and Soil Moisture Raw se	ensor data, Jan 3	2016-Apr 2016, E	BR-Ma2: Ma	anaus						
Locations Existing DOI and Alternate Identifiers DOI and alternate identifiers of the data package I it has been previously published elsewhere. Alternate identifiers provide pertinent information that can identify and locate the data set within your site's data management system. Entro as many identifiers as needed below.											
	Example: http://dx.doi.org/10.15486/NGT/X	0000000									
	Abstract * A concise description of the purpose and content of A good abstract would provide users with adequate	f this data package information to det	e. Jermine if the data	are useful for	r their needs.						
	Example: Raw output from the data logger	connected to 9 s	apflow and 5 so	il moisture :	sensors are provi	ded in xxx.dat. The					

Data Package Quality Review

Metadata Quality Report

After running your metadata against our standard set of metadata, data, and congruency checks, we have found the following potential issues. Please assist us in improving the di reusability of your research data by addressing the issues below

16 checks

X

should be understandable to scientific context, contain no Identification: 100% complete needed to access attached f Length of 100 words or more Discovery: 100% complete Interpretation: 0% complete Abstract Content * O PASS FAIL Passed 12 checks out of 14 (informational checks not included). Back Next Warning for 1 check. Please review these warnings. Failed 1 check. Please correct these issues. 1 of 2 method step descriptions have fewer than the minimum recommended 7 0 REQUIRED FAILURE words

ESS-DIVE Manual Package Metadata Review * Required **ESS-DIVE Manual Package Metadata** Abstract should include a de Review Please copy and paste the standard response below in your reply to customer. If an alternative response was used, enter it in the "Other" option, Response: Abstract Revise your abstract to include a clear and concise description of the purpose and content of the data in your data package. Similar to a journal article, your data package abstract should be written for people who have not seen your related manuscripts. Revise your abstract to meet the minimum length of 100 words. Revise your abstract to include definitions of any acronyms used so it can be understood by anyone. Revise your abstract so that it is written in complete sentences Revise your abstract to include specific details such as mention of source data for any synthesis work, software needed to view the files, clear location descriptions (avoid project-specific name with no explanation), ecosystem type involved, measurement type, etc Other:

Back

Next

Publication Cycle

Landing Page

Data Publications

Newly Published Data Packages

Counts by Fiscal Quarter

Fiscal Quarter

Mongo Express Database: ess-dive - > Collection: data_package_attribute -

Viewing Collection: data_package_attribute

🖍 New Document 📔 🖍 New Index								
Simple Simple		Advanced						
name	NO3	Regex		¢ Q Find				
	着 Delete all 14 documents	retrieved						
← First	← Prev Next -	•		Last →				
data_file	data_package_id	name	count	values				
WHONDRS_48hr_WS1_Geochem.csv	doi:10.15485/1509695	71851_NO3_mg_per_L_as_N	34	Below_Range,0.045,0.034,0.037				
WHONDRDS_48hr_Altamaha_Geochemistry.csv	doi:10.15485/1577263	71851_NO3_mg_per_L_as_NO3	35	0.94,1.02,8.43,0.63,0.59,0.69,NaN,				
WHONDRDS_48hr_EastFork_Geochemistry.csv	doi:10.15485/1577278	71851_NO3_mg_per_L_as_NO3	34	Below_Range,16.47,16.21,18.01,18				
WHONDRDS_48hr_Columbia_Geochemistry.csv	doi:10.15485/1577265	71851_NO3_mg_per_L_as_NO3	34	10.02,12.48,13.08,15.48,7.77,4.18,				
WHONDRS_48hr_WS1_Geochem.csv	doi:10.15485/1509695	71851_NO3_mg_per_L_as_NO3	34	Below_Range,0.201,0.152,0.165				
WHONDRDS_48hr_Nisqually_Geochemistry.csv	doi:10.15485/1576995	71851_NO3_mg_per_L_as_NO3	34	Below_Range,0.3				
WHONDRDS_48hr_Jordan_Geochemistry.csv	doi:10.15485/1577266	71851_NO3_mg_per_L_as_NO3	34	Below_Range,0.12,0.11,0.17,0.13,5				
WHONDRDS_48hr_Erpe_Geochemistry.csv	doi:10.15485/1577260	71851_NO3_mg_per_L_as_NO3	51	11.62,14.09,14.23,15.95,10.17,14.3				
SPRUCE_S1_porewater_chemistry_depth_2011_2013_201	doi:10.3334/CDIAC/SPRUCE.018	NO3	170	mg N/L,-9999,0,0.03,0.09,0.05,0.08				
SPRUCE_S1_groundwater_chemistry_2013_20171024.csv	doi:10.3334/CDIAC/SPRUCE.018	NO3	57	mg N/L,0.09,0.13,0.02,0.01,0.04,0.				

- Purpose: make standardized data within data packages searchable
- Challenge: No standards yet adopted
- Prototype: reading the nonstandardized comma separated value (csv) and Excel files
- Indexing everything found

Custom Data Portals – available in sandbox

- Enable development of a topic or project specific view of ESS-DIVE
- Context web pages describing project or topic
- Custom data search
- Metrics specific to data
- Enables long-term view of project/topic including context
- Can be private or public

Upcoming Project Support Features:

Project Spaces: Project management and administration interfaces for use in managing data produced by projects.

- Enable project level curation and long-term maintenance
- Provide space for sharing data within project before it is made public
- Support data curation by project data manager
- Entry of data packages on behalf of data authors by project

ESS-DIVE Long-Term Vision Connecting Users to Data

Water, water, every where, And all the boards did shrink; Water, water, every where, Nor any drop to drink.

...

Data, data everywhere and all the simulations drink Data, data everywhere All the users think

Developing Standards

ESS-DIVE Base Funds

• LBNL (Joan Damerow): Sample metadata and identifiers

ESS-DIVE Community Funds

- ORNL (Ranjeet Devarakonda): Comma separated value files & File-level metadata
- PNNL (Amy Goldman): Hydrologic monitoring data
- SLAC (Kristin Boye): Sample-based Water quality data
- PNNL (Ben Bond-Lamberty): Soil respiration data
- BNL (Alistair Rogers): Leaf physiology data
- ANL (Pamela Weisenhorn): 16S Amplicon data

ESS-DIVE

ESS-DIVE Collaboration Opportunities

- **Community funds:** What should be next?
- Data Curation/Review: Peer review?
- Outreach: Ambassadors?
- Other ideas?

Questions?

Contact: ess-dive-support@lbl.gov

Persistent sample identifiers and documentation standards to support efficient sample management, interoperability, and data reuse in Environmental Systems Science

Joan Damerow, Deb Agarwal, Kristin Boye, Eoin Brodie, Madison Burrus, Shreyas Cholia, Hesham Elbashandy, Ricardo Eloy Alves, Kim Ely, Amy E Goldman, Val Hendrix, Zarine Kakalia, Ken M Kemner, Annie B Kersting, Katharine Maher, Nancy Shiao-Lynn Merino, Fianna O'Brien, Zach Perzan, Emily Robles, Cory Snavely, Patrick Sorensen, James Stegen, Pamela Weisenhorn, Karen Whitenack, Mavrik Zavarin and Charuleka Varadharajan

ESS-DIVE Deep Insight for Earth Science Data

Sample Naming and Tracking

COMMUNITY NEED

Practical, standardized sample ID/ tracking system as samples move to different physical and digital locations

SOLUTION

Integrating and preserving sample data effectively in digital environment requires globally unique, persistent identifiers

International Geo/General Sample Numbers (IGSNs) for ESS samples

- Standardized core sample metadata, templates
- Sample landing page metadata profile, link to related samples and publications

Sample Collection Sample Transport Collaborators Labs and User Facilities Measurements Processing Sample Collection and Storage Observations Find, access, integrate, reuse semple data Biological - Omics Physical Data Analyses Analyses Repository Dataset Files Chemical Database/ Scientific Analyses Aggregator Publication **Digital Records** Sample Analysis

Sample ID and Metadata Pilot Test Methods

8 Projects, ~ 3,000 Registered IGSNs

Review proposed sample ID and metadata standard:

- Crosswalk that compares existing sample metadata standards and templates
- <u>Updated SESAR IGSN sample metadata guide</u> accounting for pilot test feedback
- Updated SESAR IGSN spreadsheet template for sample metadata

Providing Metadata and Linking Samples at Different Levels

Sample Name and **Collection ID:** Collection **IGSN**: of samples Material **Project Name** Classification Site ID: Site or sampling **Release Date** Description feature (e.g. well) Purpose Minimum Depth Latitude **Chief Scientist** Maximum Depth Longitude Country **Processing Details** Coordinate Uncertainty Biome **Collection ID** Location Description Site ID **Physiographic Feature Event ID** Description All collection, site, and event metadata **Event ID:** Sampling event also associated with individual samples Collection Date through identifiers, which could also be Collector Optional - separate files, used for other samples over time.

terminology file mapping existing terms to standard, if needed

Assigning and linking IDs to sets or chains of highly related samples and subsamples

**Subsequent IDs assigned in external labs or user facilities are separate but always associated with the sample PID

Questions?

Contact: ess-dive-support@lbl.gov

Developing CSV and File-level Metadata Standards

ORNL and ESS-DIVE Community Fund Standards

May 11, 2020

Terri Velliquette <velliquettet@ornl.gov> Jessica Welch Michael Crow Ranjeet Devarakonda Susan Heinz

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ORNL Community Fund Project is to develop two standards:

- a generic standard for the structure and content requirements of data stored in a comma-separated values file referred to as a CSV file.
- a metadata schema to describe the contents, scope, and structure of each data file within the ESS-DIVE repository referred to as file-level metadata or FLMD.

These standards will promote:

- machine-readability for the efficient extraction of file-level discovery and usable metadata.
- interoperability to facilitate the development of a future fusion database.

An Example of File-level Metadata (FLMD)

FLMD can provide:

CAK RIDGE

National Laboratory

24

- granular information that can enable data users to compare data files within a data package
- the ability to search for and locate files across an overarching data collection

Dat	aS	VE										
About	News	Participate	Resources	Education	Data							
DATAONE	SEARCH:	Search Si	ummary	Jump to: DO	l or ID	Go						
< Bac	k to searc	h Search	Metadata									
Claire	Addis.	2019. Plar	nt trait mea	surements o	of spe	cies	at sno	owfen	ces a	round	Toolik	Lake
				(1:40	407	00/4	000	4014	0) (
<u>https</u>	s://sea	rch.datao	ne.org/vi	ew/doi:10	.1873	<u>39/A</u>	<u>126Q</u>	<u>1SH</u>	<u>2V</u>			

Data Table								
Entity Name	Graminoids.cs	SV .						
		16.						
	Download 🗳	•						
Description	Plant trait data	for graminoid species at snov	Toolik Lake, Alaska, 2010-2011.					
Object Name	Graminoids.csv							
Online Distribution Info	https://cn.data	one.org/cn/v2/resolve/urn:	uid:5815e2	44-4576-4707-a196-953c5b6986b0				
Size 18870 bytes								
Authentication	4f05e737e2ca8	abb50f889326dfed036 Calcu	lated By MD	5				
Externally Defined Format Format Name			app	plication/vnd.ms-excel				
Attribute Information								
Variables		Name	Treatment					
Year								
Fence		Label	Treatment					
Veg_Type	_							
Treatment		Definition	Tenninget	second to close				
ramet		Dennibon	Treatment	applied to plant				
M wt		127 227						
D1_wt		Storage Type						
D2_wt								
DS_wt		Measurement Type	nominal					
D4_wt								
DS_wt		Measurement Domain	Enumerate	ed Domain				
M LA			-					
D1_LA			Code	Definition	Source			
D2_LA			control	plant collected from control side of snowfence				
DS_LA								
D4_LA			Show	plant collected from snow-drift side of snowfence				
DS_LA								
M num								
D1_num		Missing Value Code						
D2_num								
DS_num		Assume: Doord						
D4_num		Accuracy Report						
D5_num	-							
D6_num	+	Accuracy Assessment						
4	•							
		Coverage						
		Method						

<u>CSV Standards and Format</u>

25

• The generic structure and content requirements are the foundation for standardized and consistent data and metadata reporting. The goal is to have general data and domain-specific content and data fit within the larger common file structure.

Next Steps

Template:

 Develop example template for *.csv file

Format Check:

Implement CSV file
 format verification script

File Level Metadata Extraction Tool:

 Implement a script that will extract FLMD from a standard *.csv file and store the metadata for ESS-DIVE Search applications.

Possible Sources for FLMD and Potential Uses of FLMD

<u>FLMD</u>

- Can be populated from multiple sources (following standard formats)
- Can display with each data file on the Data Package Landing Page
- Can be searched
- Can travel with the data file if pulled into a fusion database

Hydrologic Monitoring Standards

May 11, 2020

Amy Goldman, Huiying Ren, Josh Torgeson, Huifen Zhou

ESS Cyberinfrastructure Working Group Annual Meeting

PNNL is operated by Battelle for the U.S. Department of Energy

Hydrologic monitoring data often lack consistency and metadata

<u>Scope</u>: Sensors used in the field to measure parameters in water <u>Parameters</u>: "Water level", temperature, electrical and specific conductivity, pH, dissolved oxygen

Challenges

- Rarely define terms
- •Often not machine readable
- •Rarely have information about instrumentation

Examples of ambiguous column headers	Possible questions from data users				
Elevation	Surface water elevation? Riverbed elevation? Using what datum?				
Level_m	Level of what? Relative to what?				
Well depth	Depth to water from the well casing? Water elevation in the well?				

Interested in taking a closer look and providing feedback? https://tinyurl.com/HydroStandard

Three-file system captures sensor metadata and allows flexible terminology

	Data File	Sensor Metadata File	Terminology File
٠	*Time stamps	Alphanumeric sensor codes from data file	 *Terms used in headers, data flags, missing value cells
•	Measurements	• Sensor construction (make,	 *Definition of terms
•	Alphanumeric code linking each parameter at a specific time point to sensor metadata file	model, serial number, accuracy, range, calibration, QAQC, notes)	 Definition of terms *Mapping the used terms to the terms suggested by the
•	Alphanumeric data flag codes	 Deployment detail (lat/long, *water body type, context of sensor placement, description of deployment) 	standard

Required fields are marked with *

Columns below are a subset of the standard's suggestions. Most are optional. Required columns are marked with^{*}

		No	ot the preferred term Sensor code colu					colum	lumn for the parameter matches data colu				m
					Data File	e							
*DateTime_UTC c		co	ond	WaterTemp_deg.C		DataFlag	I	Sensor_cond		Sensor_WaterTemp			
2020-05-14 13:30:00		2	52	15.2	5.2 DataFlag_01		01	S1_SpC		S3_T			
					Sense	or Metadata Fi	ile						
SensorID	SensorMake	Ser	nsorModel	SensorSN	Senso	orAccuracy	* _Lati _dec	itude deg	*Longitude _dec.deg		* WaterBodyType	SensorCo	ntext
S1_SpC	Campbell Scientific	C	CS547A	41593	+/- 5%	o of reading	43.3	.3195 -119.2593		3	groundwater [ENVO:01001004]	Well	
Terminology File													
*Term			* Definition					*MapToSuggested					
	cond		Specific conductivity in microSiemans per centimeter SpC_uS.per.cm										

Interested in taking a closer look and providing feedback? https://tinyurl.com/HydroStandard

Chemical concentrations in water, soil, and sediment samples

A community funded project for developing data and metadata standards and templates for ESS-DIVE archived data *Kristin Boye, Associate Staff Scientist, SLAC*

Relationships and structure overview

- Missing data value
- Alternate vocabulary

Data is reported in columns with key metadata included as header rows

ŝ	∽ 🖶 🏲 125% → 💲 % .00	0 123 ▼ Default (Ari ▼ 14 ▼ E	3 <i>I</i> \$ <u>A</u> ♦ ⊞ ⊞ + ≣	· Z · ♡ ▲ 🖬 GD · ♡ · 宀 · L ·		
I						
_	A	В	С	D	E	F
	columnHeaderRows_11	sampleID	sampleMaterial	notes	nitriteAndNitrateN	dataFlags_nitriteAndNitrateN
	unit				milligramPerLiter	
	unitBasis				asN	
	analysisTimeStamp				2019-09-21 11:20	
	preservationMethodID				store2C	
	preparationMethodID				dilutionx2	
	analysis Method ID				DA	
	analysisDetectionLimit				0.04-5.0	
	analysisPrecision				0.01	
	dataProcessingMethodID				avg3	
I	dataSpecifier				undilutedFinal	
2	dataRows	IERVTL10Z	liquid>aqueous		2.65	
3		IERVTL18T	liquid>aqueous	only a single measurement was made for flagged measurements	1.34	dP
		IERVTL19U	liquid>aqueous		4.21	

Current Methods and Terminology File Templates

Methods are linked through methodIDs

(defined by user or registered IGSNs or other permanent identifier)

Flags, codes, alternative vocabularies etc. are reported in a separate terminology file

This is a living document and a standard in progress - it will be most **applicable**, **appropriate**, **efficient**, and **functional** if it is adopted and accepted, which means *adapted* to **YOUR** needs and practices!!!

PLEASE reach out to me with comments or to be part of the review team for this standard

kboye@slac.stanford.edu

ESS-DIVE ESS CI Meeting 5/11/2020

Orphaned datasets limit science

- Large fluxes of greenhouse gases (GHGs) between soils and the atmosphere
- Continuous (automated) measurements increasingly common
- No standard or repository for them
- Potentially *huge* amount of data bearing on dynamics and response of earth system

Philosophy, approach, standards

- Can't be all things to all people
- Leverage historical experience
- Learn from recent ISRaD and SIDb databases
- Consultation with ICOS, FLUXNET, Ameriflux, manufacturers
- Community engagement and surveys

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.) 14?! RIDICULOUS! 500N: WE NEED TO DEVELOP ONE UNIVERSAL STANDARD SITUATION: SITUATION: THAT COVERS EVERYONE'S THERE ARE THERE ARE USE CASES. YFAHI 14 COMPETING 15 COMPETING STANDARDS. STANDARDS.

Philosophy, approach, standards

- Location in *space* and *time*
- Measured flux(es)
- Provenance
- Contributors and reference
- Instrument, errors, ecosystem, errors, ancillary data...
- Each field added has a cost that has to be paid in perpetuity!

	Field name	Description	Class	Units	Required
	CSR_DATASET	Dataset name	character		*
	CSR_SITE_NAME	Site name	character		*
	CSR_LONGITUDE	Decimal longitude of site, positive = north	numeric	degrees	*
	CSR_LATITUDE	Decimal latitude of site, positive = east	numeric	degrees	*
	CSR_ELEVATION	Elevation of site	numeric	m	*
	CSR_TIMEZONE	Timezone code, from https://en.wikipedia.org/wiki/List_of _tz_database_time_zones	character		*
	CSR_IGBP	IGBP class, from http://www.eomf.ou.edu/static/IGBP .pdf	character		*
	CSR_NETWORK	Site network name	character		
	CSR_SITE_ID	Site ID in network	character		
l	CSR_INSTRUMENT	Measurement instrument (i.e. model)	character		*

Concurrent evolution

- Building *slowly* and *concurrently* : data and standard
- This has given real-world experience with kinds and formats of data
 - ...and therefore the costs and benefits of different standards and formats
- With well-designed tools and software this process is worth it

An increasingly mature data standard and database

- Data standard increasingly refined
- Concrete mapping to Ameriflux
 BADM
- ESSD manuscript in prep
- Data available now!
- https://github.com/bpbond/cosore

ESS-DIVE data and metadata standards Leaf physiology

Kim Ely & Alistair Rogers

LUI L'ALMONT

Barrow Environmental Observatory,

About leaf physiology data

- Provides mechanistic understanding of plant and ecosystem fluxes of carbon and water
- Provides important parameterization for terrestrial biosphere models
- Necessary to understand the response of plants to global change

Data challenges

Specialist and time consuming data collection, generally

focused on limited species and geographic areas

Data standard scope

- Measurements made on leaves with portable gas exchange instruments
- Photosynthesis, respiration, and stomatal conductance
- Response to changing temperature, CO₂, and light levels
- Derived parameters used in models, e.g., $V_{c,max}$, J_{max}

Data standard components

- General metadata, as prescribed by file-level and sample metadata standards
- Detailed metadata for methods and experimental parameters
- Standardization of required data variables: names, definitions & units
- Required variables for different measurement types
- Inclusion of raw data to future-proof data collection effort

Current status and plan

- Research of existing standards complete; draft standard prepared
- Next, review with BNL and ESS-DIVE CF
- Then, invite broad community review of v2.0
- Implement resulting standards
- Publish description of standard; manuscript in preparation
- Contributors will be invited to co-author

Feedback

Contributions and comments welcome

Alistair Rogers arogers@bnl.gov Kim Ely kely@bnl.gov

Rio Chagres draining into the Caribbean Sea, Panama

ESS-DIVE ESS CI Meeting 5/11/2020

16S Amplicon data

55

16S data is widely used to examine microbial community composition (and sometimes to predict function)

Although valuable, there are many difficulties in comparing data across studies or repurposing data for other uses

Data standard needs to capture both the sample extraction and preparation as well as bioinformatic processing to ensure reproducibility and support data re-use

Data standard

Two common formats

.biom and .csv

Improvements to existing approaches:

- Capture of consensus sequence information
- Key metadata related to extraction and sample preparation
- Key metadata related to bioinformatic processing

Coordination with KBase

KBase is actively developing analysis and visualization tools for amplicon data

KBase importers will require amplicon data that adheres to the ESS-DIVE data standard in content and structure

KBase will allow export of data in ESS-DIVE compatible format

KBase is also developing templates to support the import of related sample metadata for analysis

DOE Systems Biology Knowledgebase

Questions?

Contact: ess-dive-support@lbl.gov

