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About BER
The Biological and Environmental Research (BER) program supports transformative science and scientific 
user facilities examining complex biological, Earth, and environmental systems for clean energy and climate 
innovation. BER research seeks to understand the fundamental biological, biogeochemical, and physical 
principles needed to predict a continuum of processes occurring across scales, from molecules and genomes at 
the smallest scales to environmental and Earth system change at the largest scales. This research—conducted 
at universities, U.S. Department of Energy national laboratories, and research institutions across the country—
is contributing to a future of reliable, resilient energy sources and evidence-based climate solutions.

About BETO
The Bioenergy Technologies Office (BETO) focuses on developing technologies that convert domestic lignocellulosic 
biomass (e.g., agricultural residues, forestry residues, dedicated energy crops) and waste resources (e.g., municipal 
solid wastes, animal manure, biosolids, plastic waste, biogas) into affordable biofuels and bioproducts that significantly 
reduce carbon emissions on a life-cycle basis (minimum of 70% decrease in greenhouse gases) as compared to equivalent 
petroleum-based products. These bioenergy technologies can enable a transition to a clean energy economy, create 
high-quality jobs, and support rural economies. Key to these activities is a focus on process techno-economics and 
life-cycle emissions, ensuring development of economically viable and environmentally friendly technologies.

https://doi.org/10.2172/1968870
http://science.energy.gov/~/media/ber/pdf/CESD-StratPlan-2018.pdf
https://genomicscience.energy.gov/amber-ai-ml/
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T he integration of artificial intelligence and 
machine learning (AI/ML) with automated 
experimentation, genomics, biosystems design, 

and bioprocessing technologies is poised to revolution-
ize scientific investigation and, particularly, bioenergy 
research. To identify the opportunities and challenges 
in this emerging research area, the U.S. Department 
of Energy’s (DOE) Biological and Environmental 
Research program (BER) and Bioenergy Technolo-
gies Office (BETO) held a joint virtual workshop on 
AI/ML for Bioenergy Research (AMBER) on August 
23–25, 2022 (see Appendix A: DOE Charge, p. 33). 
These interests have since been amplified in a Septem-
ber 2022 Executive Order, “Advancing Biotechnology 
and Biomanufacturing Innovation for a Sustainable, Safe, 
and Secure U.S. Bioeconomy,” to promote a whole-of- 
government approach to biotechnology development 
(White House 2022). 

Approximately 50 scientists with various backgrounds 
and expertise from academia, industry, and DOE 
national laboratories met to discuss the opportuni-
ties and challenges of AI/ML for bioenergy research. 
Workshop participants were tasked with assessing the 
potential for AI/ML and laboratory automation to 
advance biological understanding and engineering in 
general. They particularly examined how integrating 
AI/ML tools with laboratory automation could accel-
erate biosystems design and optimize biomanufactur-
ing. Discussions included the data and computational 
infrastructure needed to augment biosystems design 
applications and the expertise and workforce develop-
ment efforts urgently required to shift integrated sys-
tems toward bioenergy research more broadly.

Participants discussed many existing and future appli-
cations of AI/ML for biosystems design ranging from 
enzymes to plants and microbes, microbiomes, and 
bioprocess development. They also identified three key 
categories of scientific and technical opportunities and 
challenges: high-quality data, AI/ML algorithms, and 
laboratory automation. 

Executive Summary

Several main takeaways emerged from the workshop: 

1.  Numerous AI/ML and automated experimentation 
applications exist for a variety of DOE mission 
needs in energy and the environment. 

2.  Exemplary research grand challenges for which 
AI/ML could provide solutions include: building 
microbes and microbial communities to specifica-
tions, developing closed-loop autonomous design 
and control for biosystems design, and advancing 
scale-up and automation.

3.  Lack of sufficient high-quality, annotated data 
hinders the development of AI/ML applications.

4.  New and improved AI/ML tools are needed, 
particularly those meeting the specific needs of 
the BER and BETO research communities. 

5.  Trade-offs in performance, cost, and reliability exist 
between deploying commercially available versus 
building custom- developed instrumentation and 
software for automated or autonomous experimen-
tation; translation of manual to automated or auton-
omous methods is often a nontrivial endeavor. 

6.  Training a new generation of young scientists who 
can develop and apply AI/ML tools is needed to 
solve long-standing scientific challenges in bioen-
ergy research. 

The integration of AI/ML tools and automated 
experimentation represents a new data-driven 
research paradigm complementary to the traditional 
hypothesis- driven research paradigm. This paradigm 
accelerates design and optimization of biological 
systems and processes for a variety of DOE mission 
needs in energy and the environment. The AMBER 
workshop broadly explored the potential of this 
new paradigm for bioenergy research, of particular 
interest to BER and BETO, and identified key chal-
lenges and opportunities that DOE can address in 
the coming years by leveraging its unique capabilities 
and resources. 



April 2023           U.S. Department of Energy

Artificial Intelligence and Machine Learning for Bioenergy Research: Opportunities and Challenges

iv



U.S. Department of Energy                              April 2023 11

T hanks to recent advances in data science, syn-
thetic biology, and laboratory automation, 
interest is growing in developing artificial 

intelligence (AI), machine learning (ML), and auton-
omous experimentation for broader genomics-based 
research and biotechnology applications. To explore 
the potential of AI/ML and automation in a bioenergy 
research paradigm, BER and BETO jointly organized 
the AI/ML for Bioenergy Research (AMBER) virtual 
workshop (see Appendix B: Workshop Agenda, p. 35). 
The meeting included four breakout sessions address-
ing a broad range of topics including microbiomes, 
plant-microbe interactions, bioprocess engineering, 
infrastructure for data and computing, outreach, and 
workforce development (see Appendix C: Breakout 
Session Assignments, p. 38). 

The breakout groups reported similar AI/ML needs in 
their individual application spaces that fall under three 
pillars: high quality data, AI/ML algorithms, and labo-
ratory automation (see Fig. 1.1, p. 2). The groups also 
identified two characteristics necessary for DOE bio-
energy projects to succeed: transferability and human 
centricity. Addressing these needs and characteristics 
can help achieve the modeling and engineering of 
complex biological systems in specific application 
spaces in the bioenergy research paradigm. Applica-
tion spaces comprise end-to-end pipelines at BER and 
BETO, from gene target identification and protein 
function prediction to scale-up science and distributed 
biomanufacturing. 

The needs identified in this report are specifically 
designed to address technical hurdles in the bioenergy 
research paradigm. For example, much of the automa-
tion and real-time bioreactor monitoring tools used 
for biofuel and bioproduct process development were 
originally designed for the pharmaceutical industry, 
which prioritizes time to market rather than titer, rates, 
and yield. Repurposing automation and computational 
tools from other industries may save development 

costs, but workshop participants (see Appendix D, p. 
44) emphasized the need to identify inherent biases 
that accompany such tools. 

Participants focused on bioenergy-specific topics such 
as “science of scale-up” for bioproduction to identify 
several needs specific to biosystems design and process 
development:

•  Reducing risks in large-scale studies by developing 
transfer functions from lab-scale studies to substan-
tially accelerate bioprocess development timelines.

•  Developing autonomous bioprocessing in reactors 
to accelerate biofuel research at scale and man-
ufacture vital (or critical) bioproducts through 
pandemics, during space travel, or on other planets 
(Berliner et al. 2022).

•  Predicting gene and protein function to improve 
current strain engineering methods for biofuel and 
bioproduct production and populating large lan-
guage models that substantially compress timelines 
in strain development.

•  Designing AI/ML-enabled metagenomics and sys-
tems biology studies to help predict plant-microbe 
interactions on a warming planet and engineer soil 
microbial communities necessary to counter the 
impacts of climate change on crop yield. 

Addressing these AI/ML needs will substantially 
improve the chances of delivering on BER and BETO 
strategic goals.

Workshop participants also identified AI/ML needs 
in the end-to-end process pipeline. To achieve dis-
tributed biomanufacturing, biorefineries should be 
equipped with computational tools that can continu-
ously optimize processes based on upstream feedstock 
attributes, which can substantially impact downstream 
fermentation and separation yields. Petroleum refin-
eries have long utilized nonlinear modeling to tune 

1.  Artificial Intelligence and Machine 
Learning Needs in Bioenergy Research

https://www.nature.com/articles/s44172-022-00012-9
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Fig. 1.1. Modeling and Engineering Complex Biological Systems in the Bioenergy Research Paradigm. Numerous out-
comes (circles at top) can be realized by pursuing fundamental and applied artificial intelligence and machine learning (AI/ML) 
research and tool development specific to the bioenergy research paradigm, including high-quality data, AI/ML algorithms, 
and laboratory automation (green box at center). Successful projects will include transferability and human centricity features 
(yellow left and right boxes) which are fundamental to disruptive changes in the bioenergy field.
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•   Structured curriculum 
and digital training 
modules 

•   Community engage-
ment and effective 
communication 
among stakeholders

•    Energy justice and 
ethical considerations 
for proper and 
equitable use of AI

Human  
Centricity

•   Test models imple-
mented in real-world 
scenarios

•   Transferability 
of learnings and 
insights among scales 
and systems

•   Clarity on inherited 
biases for re-use of 
models

Transferability

•   Data standards, ontologies, and assessments

•   Infrastructure and AI to collect, clean, and anno-
tate raw multimodal data from several sources

•   Better user interfaces for lab scientists to capture  
negative data and metadata 

High-Quality Data

•   Integration of mechanistic models and prior 
empirical knowledge

•   Application of heterogeneous and causal graphs
•   Experiment recommender systems
•   AI learning on limited scientific data

AI/ML Algorithms

•   Novel sensors and imaging modalities for 
real-time predictive data

•   Autonomous self-driving laboratories with 
microfluidics 

 •    Digital twins for large-scale reactors
•   High-throughput plant cell facilities at scale

Laboratory Automation
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process conditions and fully convert each batch of 
crude oil. However, the practice produces yield vari-
ances in the pre- established suite of products (Hsu 
and Robinson 2006; Hu et al. 2002). In the biorefinery 
space, downstream unit operations should be chosen 
through AI/ML simulations based on prior knowledge 
to minimize product yield losses. DOE researchers 
should also explore next-generation feedstocks, includ-
ing municipal wastes and C1 compounds like carbon 
monoxide, methane, carbon dioxide, and others. 

Finally, participants identified researcher engagement 
with the community, especially through dynamic 
spokespeople, as a necessary endeavor. A large-scale 

biofoundry providing not only data for researchers to 
analyze and publish but also access to the community 
could democratize innovation in this field. Investment 
in large-scale facilities (e.g., high-throughput plant 
transformation and biomanufacturing facilities) can 
generate the data necessary to obtain high-fidelity 
AI/ML models. By ensuring that these models are 
openly available to transfer to industry in real-world 
scenarios and for training and other purposes, DOE 
can fundamentally impact bioenergy production and 
catalyze commercialization and knowledge sharing in 
this paradigm.
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N umerous DOE workshops and reports have 
explored how AI/ML can advance science, 
with specific focus on where science can 

leverage industry and what science-specific needs the 
community must address. Another key question is 
whether DOE can and should play a specific role in 
advancing AI/ML given its unique capabilities. These 
reports (e.g., DOE 2020a,b; DOE 2022a,b) have iden-
tified a clear DOE niche in the AI/ML research space: 
integration of prior scientific knowledge into AI/ML 
solutions for problems at scale. 

Knowledge integration should include not only data 
but also fundamental chemical, physical, and biolog-
ical principles. These principles are key to achieving 
high-quality results, but industry has shown little inter-
est in incorporating them into AI/ML solutions. 

DOE can leverage its computational, experimental, 
and observational facilities to create large-scale sci-
entific data collections that train AI/ML models for 
scientific discovery and extract underpinning scientific 
principles. During the COVID-19 pandemic, for exam-
ple, DOE’s National Virtual Biotechnology Laboratory 
(NVBL) project developed AI/ML tools to screen for 
potential COVID-19 treatment compounds at a scale 
not achievable by industry (DOE 2021b). The project 
combined the world’s fastest computers with computa-
tional modeling, novel AI/ML models, and fundamen-
tal scientific knowledge. 

2.1 Foundation Models 
for Complex Tasks
Foundation models are a recent AI/ML trend for 
addressing complex tasks. They are the Swiss Army 
knives of the AI/ML world and can self-train on 
extremely large-scale data minimized, or “tokenized,” 
to key characteristics (e.g., text, code, DNA, RNA, pro-
teins, protocols, graphs, images tokenized as patches, 
waveforms tokenized as samples, robotic control 
sequences, and time-dependent data). The tokenized 
characteristics are then lightly customized and used by 
a single AI/ML model to tackle diverse tasks. 

Foundation models can produce results at scale. For 
example, the Generative Pre-Trained Transformer 3 
(GPT-3), an autoregressive language model with 
175 billion parameters compared to GPT-2’s 1.5 billion 
(Brown et al. 2020), permits in-context learning. The 
model can be adapted to a downstream task simply by 
providing a prompt (i.e., a natural language description 
of the task)—an unanticipated emergent property for 
which GPT-3 was not trained. DeepMind’s Gato is 
another example of such a foundation model (Reed et 
al. 2022). It can perform over 600 multimodal complex 
tasks including engaging in a dialogue, playing video 
games, and controlling a robotic arm to stack blocks. 

Many discovery processes in biology and life science 
research could be accelerated and enhanced with foun-
dation models, such as complex autonomous experi-
ments at scale that include sample preparation, design, 
and execution of broad field studies. Foundation mod-
els in this area could support tasks such as knowledge 
distillation from literature and tailor-made generation 
of sequences (e.g., nucleic acids, proteins, viruses, and 
microbes), small molecules, and research protocols. 

DOE is well-positioned to develop foundation mod-
els for science due to its access to extremely large 
datasets; deep scientific knowledge and computing 
capabilities to train models; and expertise at creating 
large, multidisciplinary, mission-oriented teams. In 
accordance with DOE’s mission, this work could fuel 
scientific discovery in the research community and 
innovation in industry.

2.2 AI/ML-Based Surrogates 
for High-Performance 
Computing
Another recent trend in AI/ML for science is the 
development of AI/ML-based surrogates for high- 
performance computing (HPC). That is, replacing 
or augmenting computing-intensive kernels in HPC 
applications with machine-learned functions that com-
pute the same function much faster. 

2. DOE’s Role in Advancing AI/ML
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The approach has been demonstrated in many problem 
domains including physics, climate, computational 
fluid dynamics, molecular dynamics, drug docking, 
chemistry, density function theory, and others. For 
example, DeepDriveMD, a deep-learning-driven adap-
tive molecular simulator for protein folding, benefits 
from such augmentation, achieving speedups of >1,000 
times to >100 million times (Lee et al. 2019). The 
approach was successfully applied during the NVBL 
project on molecular therapeutics to scan 100 bil-
lion molecules for potential suitability as COVID-19 
treatments (Saadi et al. 2020; see Fig. 2.1, this page). 
Recently, hybrid AI/ML HPC solutions were replaced 
with end-to-end AI/ML, such as in the protein struc-
ture predictor AlphaFold ( Jumper et al. 2021), achiev-
ing similar accuracy much faster.

2.3 Autonomous Control and 
Discovery in Experimentation
Finally, AI/ML for science is moving from automated 
experimentation to autonomous design, control, and 
discovery. Automated workflows simply complete 
pre-programmed steps, whereas autonomous exper-
iments use AI/ML to make novel decisions based on 

experimental goals and real-time discoveries. AI/ML 
algorithms intelligently select new experiments based 
on current experimental results, creating a loop that 
explores scientific problems more quickly and effi-
ciently than a human researcher. 

Workshop participants presented several early examples 
of autonomous experiments relevant to BER and BETO 
research, primarily in the field of materials design and 
discovery (see Fig. 2.2, p. 7, and “Materials Discovery” 
sidebar, p. 8). Much can be learned and leveraged from 
existing materials design experiences and tools.

2.4 Data Quality and 
Computing Resources
Two critical components underpin novel AI/ML 
developments: the availability of large volumes of 
high-quality, annotated data and suitable computing 
and storage resources to effectively train and execute 
DOE-developed AI/ML models. The FAIR standards 
(go-fair.org/fair-principles/) make DOE data accessi-
ble for AI/ML training: 

•  Findable: Data should be findable by humans and 
computers. 

Fig. 2.1. Artificial Intelligence and Machine Learning Functions Can Speed High-Performance Computing. The National 
Virtual Biotechnology Laboratory project on molecular therapeutics created an integrated computational and experimental 
platform for designing COVID-19 therapeutics. [Courtesy Oak Ridge National Laboratory]

https://www.go-fair.org/fair-principles/
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Fig. 2.2. High-Level Paradigm Comparisons for Material and Molecular Sciences. Redox flow batteries (left) exemplify the 
current paradigm. A closed-loop discovery process (right) utilizes inverse design and a tightly integrated workflow to enable 
faster identification, scale-up, and manufacturing. [From Sanchez-Lengeling, B., and A. Aspuru-Guzik. 2018. “Inverse Molec-
ular Design Using Machine Learning: Generative Models for Matter Engineering,” Science 361(6400), 360–65. Reprinted with 
permission from AAAS.]

Continued on p. 10

•  Accessible: Users and computers know how to 
access and use the data. 

•  Interoperable: Data needs to work with more 
than one application and workflow for analysis and 
integration. 

•  Reusable: Optimizing data reuse (the ultimate 
goal of FAIR) requires describing metadata and 
data well so they can be replicated and combined in 
different settings.

In addition to FAIR, data quality and actionability 
must also be considered.

Data Quality
•  Correctness: Data collection is not error free; 

quality checks are needed.

•  Completeness: Complete data collection may 
never be achieved, so ensuring data volume and 

coverage are sufficient for a given task is necessary, 
along with collecting both positive and negative 
experimental results and clearly identifying miss-
ing data. 

•  Bias-Free: Most data are biased due to the the type 
and manner collected. Biases must be identified 
and made explicit if they cannot be removed or 
corrected, including determining the source of bias, 
how strong it is, and whether it can be mitigated. 

Data Actionability
•  Reproducible: Science is verifiable through repro-

ducibility of results. Therefore, the data used to 
train AI/ML models and the methods used to cre-
ate the data must also be reproducible. A key aspect 
to reproducibility is uncertainty quantification. 
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The general workflow for materials discovery 
consists of synthesis, processing, characteriza-
tion, and performance evaluation. These steps 
are traditionally executed sequentially, but 
automation and AI/ML methods have sped up 
the process by performing and evaluating many 
design loops in parallel while still building on 
respective outcomes (see figure). A 2019 review 
(Stein and Gregoire 2019) assessed the quanti-
tative impact of different types of acceleration, 
such as automation, parallelization, ML models, 
data repositories, active learning, and automated 
reasoning, on traditional materials science dis-
covery workflows. 

Stein and Gregoire described the workflows used 
by four different research teams in terms of 
these components, including the level of auto-
mation introduced. To determine the speedup 
achieved by the automated discovery workflows, 
they compared the number of experiments that 
could be conducted in one pass with the number 
that a traditional experimental workflow would 
deliver—assumed to be one experiment per pass. 

In Example A (see figure, p. 9), researchers, 
researchers optimized growth conditions for car-
bon nanotubes, achieving a speedup of 100 times. 
Learning was used to analyze prior experimental 
results and propose new experiments by auto-
mated robotics to optimize material combinations 
and growth conditions. The same methods could 
be applied, for example, to an autonomous bio-
reactor, the synthesis of biological samples, or 
growth conditions in a greenhouse or laboratory.

Example B represents a combinatorial explora-
tion of research space like the NVBL molecular 
therapeutics project described in Fig. 2.1, p. 6. 
The team used large-scale automation to simul-
taneously operate on libraries of up to 2,000 
samples, achieving a speedup of 2,000 times. 
To meaningfully design, steer, and evaluate 
experiments, the team selected high-value tar-
gets using computational screening of candi-
dates. Experts determined the needed growth 
conditions. Results of the entire pipeline were 
captured, analyzed, and used to inform future 
experiments. 

Example C describes a combinatorial research 
workflow (similar to example B) that achieved 
a speedup of 400 times using a combination of 

automation, parallelization, and expert-driven 
integration. Researchers added active learning 
to accelerate decisions on the best candidates to 
advance to the next step. Final characterization 
was further accelerated using real-time analysis 
and autonomous selection of the next best sam-
ple to screen.  

Example D examined sample evolution. Instead 
of using a single bulk experiment, researchers 
used several smaller specialized experiments in 
parallel to evaluate sample stability and progres-
sion, replacing one large reactor with 36 custom 
nanometer-sized reactors. Key improvements in 
the autonomous workflow occurred in real-time 
monitoring and quality control. Results were 
compared to external sources using AI models. 
The team achieved a speedup of 500 times.

Experimental Materials Science Research 
Life Cycle. Overview of core research tasks with 
arrows indicating the cyclic execution of a tradi-
tional materials science experimental workflow 
(top). Acceleration of each task in a workflow 
can be obtained by incorporating acceleration 
techniques, as represented by six types of 
accelerators (bottom). [From Stein, H. S., and J. M. 
Gregoire. 2019. “Progress and Prospects for Accel-
erating Materials Science with Automated and 
Autonomous Workflows,” Chemical Sciences 10, 
9640–9649. Reprinted under a Creative Commons 
license (CC BY 3.0).]

Continued on p. 9

Materials Discovery

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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Workflow Diagrams of Accelerated Materials Experimentation Spanning a Range of Techniques, 
Strategies, and Research Goals. Various speedups in the discovery pipeline can be achieved as increas-
ing levels of AI and automation are embedded and more processes become part of the design loop. 
Clear parallels with systems biology and synthetic biology workflows can be drawn. [From Stein, H. S., 
and J. M. Gregoire. 2019. “Progress and Prospects for Accelerating Materials Science with Automated and 
Autonomous Workflows,” Chemical Sciences 10, 9640–9649. Reprinted under a Creative Commons license 
(CC BY 3.0).]

Example A

Example B

Example C

Example D

Continued from p. 8

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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Continued from p. 7

Using data with confidence requires knowing the 
level of uncertainty inherent in the data.

•  Provenance and Explainability: The origin of data 
and results must be available to users in a form that 
enables assessment of the correctness and suitabil-
ity of data and AI/ML tools for a task at hand. This 
information creates trust in the data for future use.

•  Range of Validity: Metadata or other concepts can 
be used to clearly state boundaries regarding what 
purposes data can be used for and where it can or 
cannot be used (i.e., broad, limited).

•  Distilled: Data are summarized, analyzed, and 
packaged for specific use cases.

An example of a FAIR data repository is the 
collaboration between two DOE projects: the 

National Microbiome Data Collaborative (NMDC; 
microbiomedata.org) and Benchmark Datasets 
and AI/ML Models with Queryable Metadata 
(ENDURABLE; crd.lbl.gov/divisions/amcr/
computer-science-amcr/par/research/endurable/). 
ENDURABLE is establishing the means to provide 
AI/ML researchers with access to massive data 
repositories for developing AI/ML models to solve 
problems in microbiome science. More specifically, 
ENDURABLE is storing curated NMDC data and 
associated metadata and disseminating it for AI/ML 
research. These efforts, which follow FAIR principles, 
are making microbiome data useable to the deep 
learning community and catalyzing the development 
of AI/ML models for microbiome data science. Addi-
tionally, defining AI/ML tasks and their necessary data 
and metadata breaks down barriers to using AI/ML in 
microbiome data science and makes AI/ML research 
more broadly reproducible.

https://microbiomedata.org/
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcrd.lbl.gov%2Fdivisions%2Famcr%2Fcomputer-science-amcr%2Fpar%2Fresearch%2Fendurable%2F&data=05%7C01%7Chaunhl%40ornl.gov%7Cdbc7bda6a3704fe5460008db111e251c%7Cdb3dbd434c4b45449f8a0553f9f5f25e%7C1%7C0%7C638122593429723072%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Pt3skl0uHHJPtW1rO77gG3xVKPx%2By2ex3fUVjyD%2B0Ik%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcrd.lbl.gov%2Fdivisions%2Famcr%2Fcomputer-science-amcr%2Fpar%2Fresearch%2Fendurable%2F&data=05%7C01%7Chaunhl%40ornl.gov%7Cdbc7bda6a3704fe5460008db111e251c%7Cdb3dbd434c4b45449f8a0553f9f5f25e%7C1%7C0%7C638122593429723072%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Pt3skl0uHHJPtW1rO77gG3xVKPx%2By2ex3fUVjyD%2B0Ik%3D&reserved=0
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3.  Assessing and Supporting Automated 
and Autonomous Experimentation

L aboratory automation broadly describes the 
process, or resultant systems, of replacing human 
operators with computational or robotic equiv-

alents in a laboratory setting. Automation aims to 
reduce human tedium, repetitive stress, and strain inju-
ries; lower labor and other costs (e.g., reagents through 
microfluidic or tiny droplet dispensers); increase 
throughput, reproducibility, and reliability; and 
extend lab operations toward a 24/7 schedule. Note 
that automation is not only physical but also relates 
to information and data processing. The advent of AI 
has enabled new forms of self-driving or autonomous 
experiments and laboratories that use AI and ML to 
define a research path as it progresses based on overall 
project goals and discoveries made during an experi-
ment (Martin et al. 2023; Beal and Rogers 2020).  

Considerable laboratory automation already exists 
within DOE-supported national laboratories and aca-
demic research facilities, including both off-the-shelf 
commercial and custom systems. When available, com-
mercial systems are generally preferable because they 
often are more cost-effective, especially considering the 
exceedingly high costs of developing, supporting, and 
maintaining custom systems. However, custom systems 
might be needed when commercial systems are unavail-
able (e.g., during early phases of technology develop-
ment or when the market size is too small to justify 
commercialization) or are insufficiently configurable, 
extendable, or accessible to meet given business needs.

Perhaps not surprisingly, DOE project workflows in 
national laboratories and academic institutions are 
executed across very heterogeneous robotic, instru-
ment, equipment (e.g., mass spectrometry), and 
software platforms. Such workflows are especially 
prevalent in low technology readiness level (TRL) 
research and development environments where cus-
tom automation system components are common. 
Many of these workflows, which often constitute much 

of DOE’s supported capabilities, have at their core 
nonautomated instrumentation that may be difficult 
to automate or integrate into automated workflows. 
Heterogeneity, at least in the absence of physical stan-
dards (e.g., labware dimensions) and informatic stan-
dards (e.g., data exchange formats), is often required 
to conduct bespoke research. However, heterogeneous 
platforms place heavy burdens on efforts to integrate, 
operate, support, and maintain workflow systems. 
In many cases, not all workflow operations can be 
automated, so optimizing collaborative workflow con-
tributions from both humans and automated systems 
becomes important. These issues also relate to work-
force development, which is essential to ensure that 
developers, operators, and maintainers of these hybrid 
human and automated systems achieve their perfor-
mance potentials.

DOE project workflows span an automation gradi-
ent from fully manual (i.e., no automation) to semi-
automated (i.e., mixtures of interlaced human and 
robotic/software operations) to fully automated (i.e., 
no human operations). In some, perhaps increasing, 
instances, these workflows have become fully self- 
driving (i.e., beyond full automation and autonomous 
iterative/cyclical workflows). Each of these automa-
tion and autonomy levels has a proper time and place 
for use with commercial and custom systems. In the 
context of this workshop, which emphasized (meta)
data quantity and quality (e.g., reliability, reproduc-
ibility, and comparability), the more automated and 
autonomous a workflow, the better perhaps for sup-
porting AI/ML-directed DOE science and technology 
development. However, autonomous workflows may 
not always be the best approach; cost, performance, 
and reliability trade-offs need to be evaluated in 
each case to decide on the best path forward. Future 
research not only should focus on new components 
that make workflows more automated or autonomous 
but also on methods to guarantee their quality, reliabil-
ity, reproducibility, and explainability.
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4.  AI/ML Algorithms and Their 
Current Bioenergy Applications 

W orkshop participants discussed potential 
ways in which AI/ML approaches could 
enhance current applications in bioenergy. 

This chapter describes four areas underlying these 
research opportunities: fundamental challenges, pro-
cess development, foundational AI/ML algorithms, 
and automated and autonomous experimentation.

4.1 Fundamental Challenges 
in Synthetic Biology and 
Biosystems Design
Biosystems design, or synthetic biology, aims to engi-
neer biological systems that have novel or improved 
functions for basic and applied biological research. 
Quantitatively and predictively engineering these 
systems—including enzymes; pathways; and whole 
genomes of microorganisms, plants, and microbial 
communities (microbiomes)—is overwhelmingly 
challenging due to their intricate connectivity and 
complexity. AI/ML advancements that enable com-
puters to learn automatically from experience have 
emerged in recent years as potentially powerful tools 
to address this challenge (Carbonell et al. 2019; Volk 
et al. 2020). This section highlights four examples of 
AI/ML-enabled biosystems design and their devel-
opment challenges to illustrate the status of the field: 
(1) enzyme engineering, (2) pathway and metabolic 
engineering, (3) plant engineering, (4) and microbi-
ome engineering. For details about specific AI/ML 
tools, see Section 4.3: Foundational AI/ML Algo-
rithms for Bioenergy Research, p. 19).

Enzyme Engineering 
Enzyme engineering aims to improve enzyme pheno-
types desirable for biotechnological, industrial, and 
scientific applications (Yang et al. 2019). Directed 
evolution is one of the most widely used and successful 
tools (Wang et al. 2021). Despite its success, directed 
evolution is time intensive, labor intensive (Yang et al. 

2019), and inefficient because beneficial variants 
are rare and the possible variant space is enormous 
(Hie and Yang 2022). 

Recently, the research community has increasingly 
applied AI/ML to facilitate enzyme engineering 
(Wittmann et al. 2021; Li et al. 2019). Compared 
to traditional directed evolution, AI/ML-assisted 
directed evolution can be more efficient in locating 
beneficial variants with considerably fewer experi-
ments (see Fig. 4.1, p. 14). For example, scientists 
developed a deep learning framework called ECNet 
(evolutionary context-integrated neural network) to 
accurately predict variant fitness (Luo et al. 2021). 
Additionally, researchers used an ML algorithm called 
upper confidence bound (UCB) to explore a model’s 
uncertainty region and simultaneously sample the 
region with high fitness (Greenhalgh et al. 2021). 
UCB is an iterative process that repeatedly trains 
the model with experimentally determined variant- 
fitness data and makes predictions of new variants for 
follow-on screening. In another example, researchers 
developed an in silico directed evolution workflow 
based on Markov chain Monte Carlo to engineer 
green fluorescent protein and TEM-1 beta lactamase 
(Biswas et al. 2021).

Pathway and Metabolic 
Engineering
Researchers have effectively used AI/ML to improve 
the production of fuels, chemicals, and materials in 
only a few design-build-test-learn (DBTL) iterations 
and to analyze data to predict new biological inter-
actions or characterize component parts (Volk et al. 
2022; see Fig. 4.2, p. 15). For example, in just three 
rounds, the BioAutomata platform improved lycopene 
production by 77% compared to random screening 
(HamediRad et al. 2019). A related platform, the 
Automated Recommendation Tool (Radivojević et al. 
2020), demonstrated improved design predictions 
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for fatty acids, and a subsequent study combined 
genome-scale models with AI/ML to overproduce 
tryptophan (Zhang et al. 2020). A recent example 
used sequence information and cell sorting to char-
acterize all promoters in the yeast Saccharomyces 
cerevisiae, creating a model that, in principle, could 
enable promoter design in an engineered pathway 
(Vaishnav et al. 2022). Another example linking gen-
otype to phenotype used a set of kinase knockouts to 
predict the yeast metabolome under different knock-
out settings (Zelezniak et al. 2018).

Plant Engineering
Crop domestication and traits could be improved 
by addressing a fundamental challenge in plant 
biology: understanding how the vast cis-regulatory 
DNA sequences that surround genes control gene 
expression. To advance this understanding, various 
supervised AI/ML models have been trained on 
good-quality functional genomics data (e.g., chro-
matin accessibility and transcription factor binding). 
For example, inspired by recent progress in zero-shot 

Fig. 4.1. Comparison of Traditional Directed Evolution and Machine Learning (ML)–Assisted Directed Evolution. Tradi-
tional directed evolution (A) uses iterative cycles of diversity generation and screening to find improved variants and discard 
information from unimproved variants. ML methods (B) use the data collected in each round of directed evolution to choose 
which mutations to test in the next round. Careful choice of which mutations to test decreases the screening burden and 
improves outcomes. [Reprinted with permission from Springer Nature from Yang, K. K., et al. 2019. “Machine-Learning-Guided 
Directed Evolution for Protein Engineering,” Nature Methods 16, 687–94.]
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fitness prediction of protein variants from global lan-
guage models, Benegas et al. (2022) reported the first 
zero-shot noncoding variant effect predictor trained on 
the genomic sequence of Arabidopsis thaliana. Because 
this AI/ML model is trained using only one genome in 
an unsupervised manner, it can be easily transferred to 
any plant genome for predicting variant-effect fitness 
and improving crop traits. 

Additionally, genome-editing tools, such as the 
CRISPR -Cas system in plants, have enabled DNA 
sequence manipulation, helping inform yield improve-
ment and increase stress tolerance. However, relating 

Fig. 4.2. A Standard Workflow that Integrates Machine 
Learning (ML) with Metabolic Engineering. First, a library 
of variants is constructed and analyzed by assigning labels 
to each variant. In this example, labels are assumed to be 
titers associated with a pathway on the plasmid. Then, path-
way data is converted to a data matrix where an ML model 
is trained to make predictions based on the reserved test 
data. New high variants predicted to perform well are then 
recommended for future design. [Reprinted with permission 
from Volk, M. J., et al. 2022. “Metabolic Engineering: Method-
ologies and Applications,” Chemical Reviews (special section). 
©2022 American Chemical Society.]

phenotypic outcomes to genomic features remains 
a huge challenge. Cheng et al. (2021) developed an 
evolutionarily informed AI/ML approach to predict 
nitrogen use efficiency both within and across species. 
van Dijk et al. (2021) discusses, among other topics, 
increased efforts in using computer vision for plant 
phenotyping, implementing ML for plant- pathogen 
interactions, and identifying metabolic pathways.

Microbiome Engineering
Precise microbiome engineering requires accurately 
understanding community-level interaction edges 
between different microbial species. However, exper-
imental discovery of such edges becomes impractical 
in naturally occurring microbiomes, as pairwise com-
binations become prohibitively large. Recent designs 
of AI/ML-based approaches employ different classes 
of models to predict community interactions and thus 
community networks. To predict new interaction 
edges in a microbiome context, these models leverage 
data (e.g., community interactions) from previous 
experiments or prior knowledgebases and generally 
understood features of specific microbial species. 
For example, DiMucci et al. (2018) developed a ran-
dom forest model capable of predicting previously 
unknown pairwise interactions in microbial com-
munities. The study found that for moderately sized 
communities (i.e., 20 species), training the model on 
just 5% of experimentally confirmed interactions was 
sufficient to predict the remaining 95% of interactions 
with 80% accuracy. Scientists used the model to rank 
the importance of each feature in the trait-level feature 
vectors and thus identify the most important traits 
governing interaction edge presence in a community. 
These results provided not only interpretability to the 
model’s predictions but also a framework for hypothe-
sis generation of the mechanisms by which organisms 
interact within a community.

Achieving precision microbiome engineering requires 
highly refined prior knowledge of both the community 
interactions and predictive capabilities of community 
performance on modifying any microbe’s function. So 
far, scientists have largely applied AI/ML techniques 
to the former category. A prospective application path 
could involve using AI/ML models to design better 

Design of  
experiments  
and analysis
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microbiome engineering strategies for achieving a 
desired function. A recent review addresses the role 
of ML in microbiome-related research (Hernández 
Medina et al. 2022).

4.2 Process Development
Scale-up process development is often seen as more of 
an art than a science (Humphrey 1998; Stocks 2013). 
Lab-scale tests in microtiter plates are subject to cap-
illary effects and therefore do not represent scale-up 
performance that involves turbulence and heteroge-
neities. Large-scale reactor studies can be resource 
intensive, limiting the number of process develop-
ment studies that scientists can perform. Statistical 
design-of-experiments approaches can help achieve 
statistical confidence but only in a limited portion of 
the vast multiparametric experimental design space. 
Low representation of experimental space, along with 
minimal replication, leads to restricted understanding 
of scale-up performance, thereby increasing risk of 
failure during commercial production. Scientists and 
engineers often rely on intuition to counter unan-
ticipated events (Crater and Lievense 2018), and 
this empirical practice explains the apt perception 
of scale-up process development as an art. To review 
this issue tangibly, breakout groups focused on fer-
mentation and particularly discussed the challenges 
of scaling up fermentation processes in bioreactors, 
identifying research needs and opportunities related to 
(1) data availability, (2) imaging and autonomous bio-
reactors, (3) bioreactor digital twins, (4) downstream 
processing, and (5) scale-up science. 

Data Availability
Data generated from fermentation campaigns are 
acquired from several sensors and often include inad-
equately annotated metadata. This lack of annotation 
leads to poor understanding of all interactions among 
multiple variables. Consequently, campaign results are 
largely unactionable. Data availability alone can be a 
challenge, as few online and real-time measurements 
are currently accessible with off-the-shelf equipment. 

Most researchers use online dissolved oxygen and 
off-gas concentration measurements to estimate 

product titers, rates, and yields; they then conduct 
offline chromatography-based studies to validate these 
estimates. However, data acquisition rates from chro-
matography and other studies are very slow. Further-
more, the costs associated with data acquisition from 
multiple analytical equipment (offline and online) 
lead to low data volumes insufficient for analysis with 
a full suite of AI/ML methods. While data can be col-
lected from multiple fermentation campaigns across 
several scale-up facilities, very few public facilities can 
offer such data volumes. Most data from fermentation 
campaigns is located with companies in proprietary 
forms, thus making data sharing difficult. Ultimately, 
data acquisition, curation, and sharing in bioprocessing 
is a challenge that has received very little attention, 
even though data forms the backbone of AI/ML 
applications.

Data at the laboratory scale (<10 mL) is more readily 
available because academic and industrial institutions 
can now collect data using microfluidics and microtiter 
plates. However, insights cannot yet be transferred 
confidently from the lab to bench scale (0.25 L to 
10 L) or pilot scale (1,000+ L) for new target-host 
combinations. 

Similar challenges exist with transferability of different 
production systems. While literature is available for a 
few processes and production strains (e.g., penicillin 
production and Escherichia coli–based processes), 
many other industrial processes conducted with non-
canonical microorganisms are not widely published. 
Such data will be necessary to transfer insights from 
well-studied strains to other systems (e.g., studying 
bacterial processes to help inform fungal fermenta-
tions). Knowledge transferability from lab to pilot 
scales and among microorganisms is still an ambitious 
goal that, at present, is primarily impeded by resource 
limitations in bench- and pilot-scale testing.

Imaging and Autonomous 
Bioreactors
Fermentation is a critical unit operation in generating 
biofuels through biological pathways that depend on 
microbial catalysts to convert sugars and intermediates 
from agricultural and other waste feedstocks. Due 
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to an explosion of tools in the past decade, synthetic 
biologists can rapidly engineer microbial hosts and 
generate several strain variations with improved pro-
ductivity at the milliliter scale in shake flasks and well 
plates. However, researchers face challenges in predict-
ing these strains’ performance in bioreactors, even at 
the slightly larger scale of 2 L (Wehrs et al. 2019). As 
they grow and survive in bioreactors, microbial hosts 
within the same culture undergo both genotypical and 
phenotypical changes that often lead to lower produc-
tivity due to fitness-related mutations. Cell viability 
tests, sequencing, and omics are direct indicators of 
microbial cellular health but are only available post hoc. 
Developing novel real-time monitoring methods is 
essential for understanding single-cell level changes in 
culture while in process. 

Real-time imaging, such as feature extraction from sin-
gle cells, is a long-standing approach to assess physio-
logical heterogeneity in mammalian cells (Bevan et al. 
2019). Spectroscopy also has the potential to deliver 
real-time chemical information. Near-infrared spec-
troscopy at 2 nm resolution can provide information 
on bond rotation changes within one degree and bond 
length changes of 0.01Å. Such data can differentiate 
stereoisomers, a capability that state-of-the-art mass 
spectrometry measurements cannot provide. Informa-
tion from high-resolution infrared spectroscopy (near 
and far) enables AI/ML models to learn signatures of 
distinct cell states and phenotypes.

Raman measurements, quantum sensors, and other 
modalities are also of interest in providing novel data 
that can substantially boost the outcome from AI/ML 
methods for fermentation processes. Imaging-based 
modalities can be coupled to large investments in 
chromatography, mass spectrometry, and transcrip-
tomics, for example, to obtain mechanistic insights 
into bioprocesses. In principle, inverting AI-derived 
signatures of cell states should be possible to discover 
the chemistry that underlies predictive power. Explor-
ing this frontier could enable the passive, nondestruc-
tive monitoring of sample biochemistry. Specifically, 
learning to invert the spectral signature into chemistry, 
genes, and other relevant information will generate 
previously unavailable insights. Imaging microbial 
hosts could substantially enhance understanding 

of industrial-scale mutations, which could improve 
scale-up challenges in biofuel and biochemical pro-
duction processes. 

Additionally, new imaging-based datasets will be 
essential to develop self-driving bioreactors with fully 
automated process control and minimal human inter-
ventions for all modalities (i.e., host-product combi-
nations). Such bioreactors are paramount to removing 
the bottleneck in bench-scale process development 
capacity. AI infrastructure is needed to learn from data-
driven models, suggest operational perturbations, and 
accelerate the pace of process optimization. 

The performance of AI-based control in predicting 
extreme events and other foundational problems will 
lead to exciting new scientific studies and improved 
bioproduction processes. At the bench scale, tolerance 
for a failed experiment is high, but the cost of a failed 
commercial production campaign due to extreme 
events can be prohibitive for any company or research 
institution. AI-based methods are very suitable for pre-
dicting such events when signal-to-noise regimes are 
infinite, especially in reinforcement learning settings. 
However, in biology, signal-to-noise is quite low and 
onerous, requiring the development of fundamental 
new paradigms of specific objective functions, includ-
ing new non-Markovian formulations. Sensor devel-
opment to minimize noise must go hand-in-hand with 
algorithm development. 

Finally, development is needed for controls that enable 
nonexpert users to operate bioreactors for process 
development to maximize titers, rates, and yields 
of bioenergy molecules. Such efforts can have a far- 
reaching impact. For example, applications in defense 
and space travel, where austere environments demand 
automated production of food, fuel, and medicines via 
fermentation, will need controls that users can operate 
without the help of expert process engineers.

Bioreactor Digital Twins
Although the pharmaceutical industry already applies 
mechanistic modeling for bioreactor studies based 
on digital twins, or virtual models designed to accu-
rately represent a physical object or process, few such 
studies exist in the biofuel and biochemical domains. 
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One reason for this disparity is that large bioreactors 
(10,000+ L) are required for biofuel production com-
pared to smaller reactors (~1,000 L) used to produce 
pharmaceutical ingredients. Spatial heterogeneity in 
process conditions occurs across the height of a large-
scale bioreactor due to the water column’s weight on 
bottom layers, which experience higher pressures, 
higher oxygen and carbon dioxide concentrations, 
and possibly lower glucose concentrations. Through 
computational fluid dynamics coupled with metabolic 
modeling, researchers have shown that heterogene-
ity in process conditions in large-scale bioreactors 
impacts microbial cultures and their productivity 
(Haringa et al. 2018). In many cases worldwide, only 
global, single-point samples are taken during a pro-
cess, leading to limited information on local process 
performance. Novel sensors and data streams from 
different parts of a large bioreactor can help describe 
spatial heterogeneity and develop digital twins for 
simulations that can minimize experimental testing in 
large bioreactors.

Downstream Processing 
Downstream processing (DSP) refers to one or mul-
tiple unit operations performed on a fermentation 
culture after it exits a bioreactor. DSP could involve 
a one-step centrifugation or filtration process or a 
multistep serial process that includes cell disruption, 
extraction, and purification, or evaporation and drying. 
The state-of-the-art approach to develop a DSP suit-
able for a particular molecule involves testing several 
unit operations in series and parallel. DSP develop-
ment requires large amounts of fermentation broth 
(i.e., at least tens of liters but more typically hundreds) 
and, although expensive, is essential for establishing an 
end-to-end process at large scales prior to commercial-
ization. Researchers can use AI/ML approaches—in 
combination with chemical, rheological, and other 
physical properties of the fermentation culture and 
product—to predict the performance of individual 
and combinations of DSP unit operations as well as 
their optimal operating conditions. Such solutions can 
substantially reduce both the cost and time needed 

to identify optimal process pathways, a task currently 
conducted using an empirical, trial-based approach.

Finally, most DSP unit operations used in current 
biofuel and biochemical production chains were 
developed for other industries, such as pharmaceu-
ticals and food. Substantial innovation is needed to 
develop unique separation equipment for biofuels 
and bioproducts, and AI/ML approaches may help 
identify previously unconsidered methods for desir-
able molecules.

Scale-Up Science
To date, lessons learned from the pharmaceutical 
industry have guided industrial bioreactor scaling 
and development despite many differences between 
pharmaceutical and biofuel production. For exam-
ple, biofuels must be manufactured at massively 
higher quantities compared to vaccines and other 
medicines (i.e., millions of gallons versus thousands 
of kilograms). Also, contaminated biofuels, unlike 
pharmaceuticals, are salvageable because the batch 
ultimately can be purified enough to burn in an 
engine. Additionally, scientists can engineer synthetic 
and natural microbial communities to generate bio-
fuels, especially communities associated with waste 
and second- generation feedstocks (e.g., molasses and 
bagasse; Senne de Oliveira Lino et al.). Finally, while 
the pharmaceutical industry is typically focused on 
the filing time for drug approval from the U.S. Food 
and Drug Administration, the biofuels industry is 
often working to maximize titers, rates, and yields to 
attain economic viability. 

The biofuels industry needs much higher capacity for 
bench-scale bioreactor studies and could substantially 
benefit from sharing specific lessons learned about bio-
fuel processes. However, with no opportunity to pub-
lish such process-based knowledge, lessons learned are 
often shared orally. A central knowledge repository and 
a self-driving and digital twin approach that enables 
conducting multiple experiments in a single bioreac-
tor could maximize resources and commercialization 
prospects. Biofuel- centric sensor and tool develop-
ment, along with AI/ML applications, can also lead to 
radical improvements in bioprocessing.
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4.3 Foundational AI/ML 
Algorithms for Bioenergy 
Research
Some of the many AI/ML tools (i.e., development 
frameworks and models) broadly used today stem 
from industry developments. However, the quality 
of available AI/ML solutions varies widely not only 
in robustness, reproducibility, and explainability but 
also in applicability to scientific challenges. Industry 
tool suites that are often good for general tasks require 
scientific knowledge integration to produce acceptable 
results in research settings. For applications in the BER 
mission space, scientists are using AI/ML for increas-
ingly complex applications, and AI/ML-accelerated 
data and image analysis is becoming standard in vari-
ous scenarios across the BER community. 

The following sections describe six examples of new, 
more complex AI/ML opportunities and research 
needs in bioenergy: (1) matching AI/ML models to 
problems of interest, (2) merging AI/ML predictive 
capabilities with mechanistic insight, (3) overcoming 
the limited data problem, (4) integrating data from var-
ious resources, (5) quantifying the predictive capacity 
of AI/ML models, and (6) developing generally appli-
cable large language models and foundation models. 
These examples also highlight future challenges that 
could be addressed with AI/ML approaches. 

Matching AI/ML Models 
to Problems of Interest 
Choosing an AI/ML model for the problem of inter-
est depends on multiple factors, such as the nature of 
labels or output, the number of data points available 
for training the AI/ML model, and the type of input. 
Depending on the labels, ML models fall into three 
primary categories: classification, regression, and 
clustering. If the labels for training the AI/ML model 
are not available, clustering can help find similarities 
between data points. Small datasets typically restrict 
model choice to traditional ML models (e.g., ridge 
regression, support vector machines, and random 
forest). However, larger quantities of data allow for 
the consideration of deep neural networks. Recently, 

Greener et al. (2022) developed a guide to ML for 
biologists (see Fig. 4.3, p. 20). 

While AI/ML seems ideal for the scale and complexity 
of synthetic biology problems, limited data availabil-
ity is a critical bottleneck to developing bigger and 
better AI/ML models. A new paradigm in addressing 
the problem of limited data is manifold learning or, 
in other words, feature engineering. This approach 
enables representation of complex, high-dimensional 
data in low dimensions while capturing problem- 
specific information and reducing unnecessary noise. 
This outcome can be achieved using techniques from 
unsupervised learning such as autoencoders and train-
ing a low-parametrized traditional AI/ML model on 
these low-dimensional data representations.

In the case of highly parameterized AI/ML models, 
such as deep neural networks, model architecture 
can influence prediction capabilities. The simplest 
neural network architecture is multilayer perceptron 
in which layers of artificial neurons are arranged in a 
fully connected fashion. Input types require different 
model architectures. For example, convolutional neu-
ral networks (CNNs) can capture local spatial struc-
tures and are most often used for image-like data. One 
major application of CNN is to identify or predict 
subcellular organization and cell fate using micros-
copy images. 

Graph convolutional networks (GCN) are applied in 
tasks involving entities connected by defined relation-
ships or interactions. GCNs update node properties 
in the network by combining predictions from all 
neighboring nodes. They therefore are better suited 
for graph-structured biological data, such as molecules 
(composed of atoms and bonds) and gene–gene inter-
action networks (composed of genes and interactions). 
Alternatively, recurrent neural networks like long 
short-term memory are more suited for sequential bio-
logical data, such as time series prediction and protein 
function or structure prediction. 

Language models from natural language processing 
(NLP) provide another framework to encode sequen-
tial data in biology. NLP models, for example, could 
treat protein sequences as sentences in a foreign lan-
guage and only make a viable variant or meaningful 
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sentence when amino acids are put in a certain order. 
For instance, Transformer, a state-of-the-art model in 
NLP, tracks relationships in sequential data like words 
in a sentence, thereby learning context and meaning. 
As such, the model can perform translation tasks (e.g., 
translating an enzyme to the substrate it can catalyze). 

Merging AI/ML Predictive 
Capabilities with 
Mechanistic Insight 
While AI/ML models are known for their predictive 
capabilities, their inner logic is difficult to interpret 
and thus obstructs scientific understanding of bio-
logical insights or mechanisms. However, advances 
in the field of interpretable AI/ML enable important 

patterns and features underlying an AI/ML model to 
be identified using sensitivity analysis, saliency, and 
attention-based methods. Additionally, genome-scale 
metabolic models (GEMs) provide features that can 
merge AI/ML predictive capabilities with mechanistic 
insight. GEMs are designed to satisfy known biolog-
ical constraints on metabolism, such as reaction stoi-
chiometry, mass conservation, gene-product- reaction 
encoding, and nutrient environment. As a result, 
GEM-derived features are biologically feasible and 
can be used to discriminate and interpret differences 
between phenotypic states. One example of a GEM-
based ML framework is the Metabolic Allele Classi-
fier (MAC), which takes the genome sequence of a 
particular tuberculosis strain as its input and classifies 

Fig. 4.3. Flowchart Summarizing How to Select a Machine Learning (ML) Model. The overall procedure for training an 
ML method is shown along the top. A decision tree to assist researchers in selecting a model is below. However, a simple 
overview such as this cannot cover every case. For example, the number of data points required for ML to become applicable 
depends on the model being used and the number of features available for each data point, with more features requiring 
more data points. Deep learning models that work on unlabeled data also exist. [Reprinted with permission from Greener, G., 
et al. 2022. “A Guide to Machine Learning for Biologists,” Nature Reviews Molecular Cell Biology 23(1), 40–55.]
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strains as either resistant or susceptible to a specific 
antibiotic (Kavvas et al. 2020). As MAC provides an 
allele-parameterized form of flux balance analysis, sta-
tistical tests between antibiotic-specific resistance and 
susceptible strains can provide a biochemical interpre-
tation of the genotype-phenotype map.

Overcoming the Limited Data 
Problem in Bioenergy Research
Although AI/ML can greatly benefit synthetic biol-
ogy, it also has some limitations. One major challenge 
is that AI/ML is notoriously data hungry (Hsu et al. 
2022). Training accurate AI/ML models generally 
requires sufficient training data, yet biological data can 
be limited by the difficulty and expense of experiments 
and data acquisition, which consequently hinder the 
training effectiveness of AI/ML models. 

Recently, several studies aimed at building AI/ML 
models that leverage fewer data points (Wittmann 
et al. 2021) revealed that the limited data problem 
can potentially be solved using a generative model 
(Madani et al. 2020) or a “low-N” model, which relies 
on a low number of training data points (Hsu et al. 
2022). Generative models create new samples follow-
ing a distribution, making full use of the unlabeled 
information abundant in biology. For example, Madani 
et al. (2020) successfully applied generative models 
to de novo protein design and introduced a protein 
language model termed ProGen. Trained on billions 
of protein sequences, ProGen can generate protein 
sequences with controllable features (e.g., function). 
Data-efficient low-N models offer another potential 
solution to data limitations. A low-N study by Hsu 
et al. (2022) successfully trained a linear regression 
model tasked to predict protein variant effect using as 
few as 48 variants. 

Integrating Data from 
Various Resources
Data integration from different types is often an 
empirical task that requires testing to find the 
highest- performing model for the specific biological 
objective (Kim et al. 2016; Nguyen and Wang 2020; 
Zampieri et al. 2019). Integration techniques include 

multimodal ML in which (1) a learned function at 
various stages of the learning pipeline brings various 
data streams together (Culley et al. 2020) or (2) 
data is mapped to an intermediate data structure that 
hypothetically represents the underlying biological 
ontology (Cho et al. 2016; Ma et al. 2018). Addi-
tionally, enforcing constraints such as mass balance 
between reaction and product in a chemical reaction 
can encode biophysical information into neural net-
works (Wang et al. 2022). Other approaches can 
encode domain knowledge into physics- inspired 
neural networks where loss functions are designed to 
optimize a domain-specific property ( Ji et al. 2021). 
Encoding domain knowledge and mechanistic knowl-
edge directly into AI/ML models is a more promising 
pursuit than either parallel mechanistic and AI/ML 
models joined at the final stage for prediction or mech-
anistic models used to generate features for AI/ML 
models.

Quantifying Predictive  
Capacity of AI/ML Models
Quantifying the overall predictive performance of 
AI/ML models requires multiple metrics. However, 
trade-offs between metrics are typical; for instance, 
optimizing mean squared error might result in lower 
correlation. Additionally, optimizing loss functions 
might drastically increase overall model complexity. 
For example, Salis et al. (2009) used a linear model 
instead of a popular nonlinear model like an artificial 
neural network to create the promoter calculator that 
provides an explainable mode for RNA polymerase 
binding and transcription. Since metrics can bias 
data processing and model development, evaluation 
metrics must be considered at the origin of project 
planning. Ultimately, the engineering goal is tightly 
bound to evaluation metrics. As a best practice, a wide 
variety of balanced metrics should be reported to 
enable future developers to benchmark against previ-
ous results for the same or similar tasks. When work-
ing on an unprecedented learning task, metrics should 
be compared to mechanistic models that can make 
similar comparisons.
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Developing Generally Applicable 
Large Language Models 
and Foundation Models 
Recently emerging as the preeminent strategy for 
scaling AI/ML model capabilities, large language 
models (LLMs), foundation models, and their under-
lying technologies have quickly revolutionized NLP 
and computer vision. In less than 4 years, LLMs have 
grown more than a thousandfold. Current models—
namely, Open AI’s Generative Pre-trained Transformer 
3 (GPT-3), Google’s Language Model for Dialogue 
Applications (LaMDA) and Pathways Language 
Model (PaLM), and Google subsidiary DeepMind’s 
Gopher—take in terabytes of data to train hundreds 
of billions of parameters. At these scales, LLMs have 
demonstrated unprecedented, and often uncanny, 
capabilities not only in language generation quality but 
also understanding and reasoning about the knowl-
edge they ingest. These capabilities and the further 
potential of LLMs pose an important opportunity to 
drive and accelerate systems and synthetic biology 
research. Thanks largely to their flexibility in digest-
ing different data sources (e.g., text, images, signals, 
and spectra) at tremendous scales, LLMs and their 
derivatives have achieved state-of-the-art results not 
only in general language and image tasks but also in 
biological literature parsing. Examples include Bidirec-
tional Encoder Representations from Transformers for 
Biomedical Text Mining (BioBERT), DNA sequence 
analysis (DNABERT), gene regulatory analysis (Gen-
eBERT), protein structure prediction (AlphaFold2), 
and others. These models have also been extraordi-
narily successful in multitask and multimodal appli-
cations, including the construction of sparse expert 
models such as Switch Transformers and Google’s 
Generalist Language Model (GLaM), which may scale 
to trillions of parameters.

4.4 Automated and 
Autonomous Experimentation
AI/ML has profoundly impacted automation. Pro-
duction arrays and test robotic platforms are now 
available for automating DBTL cycles, and compu-
tational control over the build and test steps enables 
the development of closed-loop systems performing 

AI/ML-driven scientific experiments. This capability 
can significantly reduce the combinatorial complexity 
of a given problem, optimizing systems faster than tra-
ditional methods.

Preliminary efforts in self-driving microfluidics labora-
tories for systematic titer, rate, and yield improvements 
in synthetic biology have produced a semiautomated 
process that leverages a droplet-based microfluidic 
system to enable CRISPR-based gene editing and 
high-throughput screening on a chip (Iwai et al. 2022). 
CRISPR-based engineering demonstrated the system’s 
capabilities in two test cases: (1) function disruption 
of the galactokinase gene (galK) in E. coli and (2) tar-
geted engineering of the glutamine synthetase gene 
(glnA) and the blue-pigment synthetase gene (bpsA) 
to improve indigoidine production in E. coli.

Newer autonomous experiments go beyond pure pro-
cess automation. While automated experiments follow 
a predefined plan, autonomous experiments instead 
adapt and suggest new experimental pathways based 
on developments during an experiment. These early 
autonomous experiments are supported by several key 
technologies, such as (1) optimal experimental design, 
which determines the next best step given a set of 
experimental goals; (2) decision-making under uncer-
tainty, which assesses and expresses the underpinning 
AI/ML model’s confidence in the available informa-
tion used for decision-making; and (3) unsupervised 
and reinforcement learning, which provides a means 
for continuous learning throughout the experiment 
with potential system and user feedback to improve 
the outcome. A few examples of successful imple-
mentations of first prototypes include BioAutomata 
for synthetic biology (see sidebar, BioAutomata: A 
Self-Driving Biofoundry for Biosystems Design, p. 23) 
and Brookhaven National Laboratory’s National Syn-
chrotron Light Source II (NSLS-II) for materials dis-
covery and physics (BNL 2021). An even more recent 
demonstration showed the interaction between two 
beamlines at NSLS-II via AI/ML, each informing the 
other of further explorable regions of interest during 
parallel experiments. The approach has shown great 
promise not only in making experiments more efficient 
but also in significantly accelerating discovery. The 
developed principles could be equally applied to bio-
logical experiments with great impact. 
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                                                         Chapter 2  •  DOE’s Role in Advancing AI/ML

A fully integrated biofoundry, BioAutomata 
enables closed-loop design and optimization 
of biological systems (HamediRad et al. 2019). 
After setting initial parameters, designing the 
sequence space of variable regions (e.g., pro-
moter variants in a combinatorial pathway 
assembly), and defining objective functions, 
BioAutomata selects which experiments expect 

the highest yield improvements. It then per-
forms those experiments, generates and learns 
from data, and updates its predictive model 
based on newly presented evidence. Using this 
new information, BioAutomata decides which 
experiments to perform next to reach a user’s 
goal while simultaneously working to minimize 
experiments conducted and project costs. 

BioAutomata: A Self-Driving 
Biofoundry for Biosystems Design

BioAutomata: An Integrated Robotic System for Autonomous Experimentation Driven by Artificial Intel-
ligence and Machine Learning (AI/ML). The platform was developed by researchers from DOE’s Center for 
Advanced Bioenergy and Bioproducts Innovation (CABBI). [Courtesy CABBI]
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5.  Opportunities and Challenges

A I/ML and automated experimentation present 
key opportunities and challenges for advanc-
ing biological understanding and engineering, 

especially in bioenergy, biosystems design, and bio-
manufacturing. These opportunities intersect three 
research grand challenges and require addressing gaps 
in (1) experimental, data, and computing infrastruc-
ture; (2) various bioenergy applications of AI/ML, 
such as genotype to phenotype prediction, biosystems 
design, and bioprocessing; and (3) education, training, 
and workforce development. By leveraging its unique 
capabilities and resources, DOE is well-positioned to 
realize AI/ML-based opportunities for missions in 
energy and environment.

5.1 Science Challenges 
Three exemplary research grand challenges could ben-
efit from AI/ML solutions.

1.  Microbes and Microbial Communities Built to 
Specifications. AI/ML could design genomes with 
predefined properties for specific environments, 
ensuring that genomes perform as expected. A key 
needed novel foundational AI/ML capability is the 
use of specifications, theory, and experiments to 
learn new biology.

2.  Closed Loop Autonomous Design and Control 
for Biosystems Design. Autonomous, self-driving 
experiments that optimize facility resources, reduce 
the number of experiments, and limit redundant 
data collection are poised to profoundly transform 
experimentation by searching for new experimental 
parameters and settings and targeting new bio-
logical materials and processes. Key needed novel 
foundational AI/ML capabilities are human-in-the-
loop hypothesis creation and testing, the ability 
to work with few data, and delivery of trustworthy 
solutions.

3.  Bioprocess Scale-Up and Automation. Translat-
ing research progress into industrial bioengineering 
innovation requires scale-up of experiments at 

multiple scales (e.g., from microtiter plates to flasks 
to large and highly mixed bioreactors instrumented 
with comparable measurements for integration). 
Key needed capabilities are good-quality data and 
metadata, available and accessible data and com-
puting at scale, the ability to work with few data, 
and digital twins for guidance.

Similar AI/ML needs exist for all three grand 
challenges:

•  Massive, annotated datasets or, alternatively, the 
ability to learn from few data.

• Predictive capabilities to foresee outcomes.

• Trustworthy AI/ML.

•  Effective collaboration between humans and 
AI/ML (e.g., in developing and testing hypotheses).

•  AI/ML models capable of executing on small edge 
devices as part of larger complex workflows.

•  Availability of objective-based decision-making 
under uncertainty (i.e., optimal experimental 
design).

•  Efficient and effective capture of expert knowledge 
in AI/ML models.

•  Digital twins to design, accompany, guide, and 
inform complex experiments. 

•  Ontologies in addition to AI/ML for support-
ing technologies (e.g., robotics and sensors) and 
AI/ML-specific computing infrastructure, meta-
data, and data standards.

5.2 Technology Gaps
Breakout participants discussed challenges in exper-
imental, data, and computing infrastructure relevant 
to BER and BETO application areas and AI/ML. 
These challenges included concerns about automation, 
standardization, and data quality; underdevelopment 
and use of certain methodologies and tools; commu-
nication and technology gaps between biological and 
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computational domains; and current funding models’ 
lack of coordination at scale, which impedes risk- 
taking, agility, and innovation.

Laboratory Automation
Tension and trade-offs exist between deployment of 
commercial, off-the-shelf instrumentation and soft-
ware versus custom development (or retrofitting). 
Desirable systems are encompassing and stable yet 
flexible enough to be adapted to changing needs. Sev-
eral representative systems and environments would 
require hybrid commercial and custom components, 
including AI/ML algorithm–directed robotic (as well 
as microfluidic) systems capable of collecting large 
amounts of diverse data in a nondestructive manner, to 
guide AI/ML systems that explore bioprocess optimi-
zation space in bioreactors.

Automation gradients also pose challenges. Translating 
manual to automated methods is often nontrivial, but 
an additional challenge for semimanual workflows is 
the difficulty in achieving enough contiguous auto-
mated method coverage to avoid frequent interleaving 
of manual and automated steps.

Data Infrastructure
Important challenges in data infrastructure include 
data exchange standardization, data quality, and  data 
privacy (especially commercial). Integrating heteroge-
neous software, data, and automation across vendors 
and developers is difficult, partly due to a lack of stan-
dardized metadata formats, vocabularies, and syntaxes. 
Likewise, ontologies may be too static as founda-
tional models evolve over time. However, dynamic 
data ontologies and exchange standards can create 
interface- breaking changes, so these systems must have 
clear change management processes, proper migration 
procedures, and ongoing contact with stakeholders to 
maintain stability. 

A key challenge in the development of capable AI/ML 
models for scientific discovery is the need for very 
large, high-quality datasets suitable for the research 
questions at hand. Data quality matters more than the 
amount because high-quality negative data is required 

for ML and model development. Given the necessary 
scale and coverage of these datasets to avoid gaps or 
undesirable biases, small research efforts no longer 
have the capacity to create them. Instead, automated 
coordinated campaigns are needed, enabled by changes 
in experimental design. Autonomous experiments and 
laboratories can play key roles in these campaigns, but 
they present their own implementation challenges. An 
additional data-related challenge is how to build mod-
els on top of a foundation of private (e.g., company- 
owned) primary data and make the trained models 
available to the public without revealing the primary 
data and creating issues with intellectual property or 
copyrights.

Digital Twins
Building predictive digital twins (or using AI/ML to 
automatically develop them) requires new types of 
tools to reliably predict nonintuitive targets and pro-
duce more accurate multiscale modeling of biological 
systems and processes. A big challenge in metabolic 
engineering, for example, is researchers’ tendency to 
rely on gene targets reported in the literature. Pow-
erful computational tools, whether biophysical, ML, 
or a combination, could predict nonintuitive targets 
for metabolic engineering (e.g., genes of unknown 
function or not reported in the literature) that could 
significantly benefit system performance. However, 
the reliability of these predictions, either actual or 
perceived, has not surpassed the threshold needed to 
secure resources. Perceptions of reliability and risk may 
be confounded by metabolic engineers if, for example, 
they do not understand how biophysical or ML mod-
els work and thus cannot assess risk versus reward.

Technology Adoption
Computing infrastructure-related challenges include 
barriers to technology adoption and establishment of 
benchmarks that encourage adoption. As technologies 
show success, their adoption increases. However, early 
success can lead to algorithm fatigue. In such cases, the 
continuous release of new algorithms that are not nec-
essarily improved based on community- accepted met-
rics contributes to the reluctance to adopt new ones. 
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Benchmarks must therefore be established to test new 
algorithms, models, and methods and a leaderboard 
established to publicize tool performance based on the 
benchmarks. The frequent gap between benchmark 
performance and usefulness for novel scientific discov-
ery must also be addressed.

Interdisciplinary Communication
Similar challenges affect interdisciplinary commu-
nication and the accessibility of AI/ML capabilities 
and data repositories to nonexperts. Many are related 
to interactions between experimentalist and compu-
tational teams and ensuring that each understands 
the parlance of the other. Part of the solution could 
be to improve and simplify software and automation 
user interfaces or low-code environments to make a 
subset of AI/ML capabilities accessible (e.g., 20% of 
the functionality that will satisfy 80% of needs) while 
simultaneously preventing nonexperts from misusing 
the tools or misinterpreting their results. Similarly, the 
substantial effort required to enter data into repository 
systems (e.g., laboratory information management sys-
tems and electronic notebooks) could be minimized 
by developing AI/ML-guided methods to capture 
metadata or extract raw instrumental data for deposit 
into AI/ML-serving data systems.

Risk Appetite
The reluctance to take risks, which is difficult to eval-
uate, presents an inertial challenge to innovation, such 
as in metabolic engineering efforts that would benefit 
from pursuing nonintuitive targets. Researchers in 
resource-constrained environments are less likely 
to take risks, often developing small, bespoke infra-
structures without coordination with other groups, 
rendering them difficult to maintain and support. Such 
factors produce incremental improvements that are 
more evolutionary than revolutionary. 

Efforts to foster higher-level coordination across dif-
ferent endeavors and provide the resources needed to 
encourage innovation and risk-taking will help develop 
core solutions to big common challenges. Overarching 
organizations could achieve this by helping knit together 
experimental, data, and computing infrastructure. 

A related challenge for researchers developing technol-
ogies and capabilities, as opposed to those pursing sci-
entific goals, is how to prepare specific and quantitative 
milestone-driven plans that deliver accountability to 
funders without a commitment to prescribed features 
or specifications that would impede agility and respon-
siveness to users’ unanticipated and often changing 
needs. One possible approach to this challenge, which 
is compatible with user-centered design practices, is 
to prescribe procedural milestones (e.g., conduct cus-
tomer discovery interviews and develop features prior-
itized by these interviews).

Autonomous Experiments 
and Laboratories 
Many research directions in DOE’s mission space (e.g., 
systems biology and biosystems design) will require 
moving toward autonomous laboratories driven by 
AI/ML. These capabilities will enable researchers to 
execute high-throughput experiments (e.g., microbial 
systems from growth through omics data generation 
and molecular structure determination) and leverage 
high-throughput robotic laboratories capable of pro-
ducing datasets on the order of 100,000 data points in 
run times of a few days. Autonomous infrastructure 
must be rapidly configurable for different organisms, 
instruments, experiments, and protocols. Scientists 
will require the ability to define growth goals and qual-
ity criteria directly to robotic AI/ML control systems, 
enabling generation of high-throughput, population- 
scale, multiple-omics data types. Below are several 
exemplary unmet needs.  

Capture Expert Knowledge to Drive Autonomous 
Experiments and Laboratories. For AI/ML-enabled 
bioenergy research, establishing high-throughput facil-
ities for plant cell experiments at scale is important. 
Nearly all existing large-scale robotic laboratories were 
developed for microbial or mammalian cell systems, so 
hardware and software are needed to address the unique 
challenges of plant biotechnology. Plant biotechnology 
expertise (e.g., cell transformation and growth) must be 
transferred to AI/ML systems that will drive robots. 

Establish Environmentally Hardy Technology for 
Field-Scale Autonomous Experiments and Lab-
oratories. Automated field sites capable of carrying 
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out large-scale field trials autonomously, as well as 
autonomous greenhouse facilities, must be established. 
Commercial solutions (e.g., from the agriculture 
community) must be leveraged as much as possible to 
enable remote surveys of plant health, growth condi-
tions, stress tolerance, and optimal growth conditions 
within environmental constraints. In the research 
space, development of a species-agnostic platform 
may be a required investment for planting systems and 
plant identification tracking systems (e.g., 100,000 
plantlets  field  assays  data). In addition, there 
is a need to integrate AI/ML into small sensors, small 
robots, large field equipment, and remote sensing. 

Address Increased Complexity Due to Scale for 
Autonomous Experiments and Production. Many 
differences exist between current pharmaceutical para-
digms and those suitable for biofuels and bioproducts. 
BETO applications often require translation to scale 
and reliability. Needs include massively increased 
product quantities, more concern about scaling, less 
concern about batch contamination, and more atten-
tion to the potential benefits of including feedstock- 
associated microbes. Unlike the pharmaceutical 
industry, the biofuels and bioproducts community 
faces key questions that involve (1) determining how 
to investigate microbial communities that thrive on 
feedstocks and with other microbial communities that 
feedstocks introduce into a process and (2) under-
standing the evolution of microbial communities 
in large-scale bioreactors. Accelerating biofuels and 
bioproducts research requires identifying which scales 
must be measured to predict behavior and detecting 
emergent, divergent phenomena and their causes. 
These fundamental capabilities will enable autono-
mous production at scale. 

Facilitate Training of AI/ML Models for Bioenergy 
Scenarios. The advanced AI/ML research community 
requires data and computing infrastructure capabilities 
beyond those available today, specifically:

•  Data Archives — Needs include new services from 
existing data archives, such as AI/ML-ready data 
sufficiently labeled and cleaned for immediate use 
in AI/ML training. Users require tools to identify 
gaps in existing data collections and automatically 

initiate additional data collection campaigns of 
varying sizes to fill those gaps, linking to computing 
and experimental facilities and projects.

•  Computing Resources — Training large-scale 
AI/ML models requires sufficient computing 
resources.

•  New AI/ML Training Infrastructure — Scien-
tists need capabilities for combining or leveraging 
large, potentially multidisciplinary data collections 
that support AI/ML designs, development, and 
training. Data should be permanently available on 
AI/ML-specific computing hardware for medium 
timescales of months to years (depending on the 
project or campaign) with the ability to share data 
and models with others. 

•  Integrative Technology Test Labs — Many of the 
described scenarios rely on integrating AI/ML with 
robotics, sensors, or domain-specific edge devices. 
Test laboratories would benefit these scenarios by 
enabling researchers to rapidly integrate and test 
solutions, particularly for complex experiments.

AI/ML Challenges
AI/ML challenges identified in the workshop fall into 
three principal needs: (1) new or improved AI/ML 
methods, (2) tools that meet the specific needs of BER 
and BETO research communities, and (3) industry 
partnerships.

Opportunities for autonomous operation of exper-
iments, laboratories, and field sites cannot be fully 
met with existing AI/ML models and methods. 
New research is needed to enable the bold science 
grand challenges outlined by workshop participants. 
Several science communities have conducted first-
of-their-kind autonomous experiments, but they 
remain limited in scope. Fully autonomous complex 
experiments, laboratory operations, and field sites will 
require AI/ML models for hundreds to thousands of 
different tasks for controlling every aspect of the work, 
including devising hypotheses, predicting results, and 
choosing paths that optimize scientific outcomes based 
on set research goals. Some of these needed capabili-
ties exist today, but others, like models for hypothesis 
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generation and translation of scientific goals, are in 
their infancy at best. An even bigger challenge is cus-
tomizing so many models to widely varying experi-
ments; the training data and available workforce are 
currently insufficient to accomplish this customization.

Foundation models could provide a pathway to 
autonomous operation of experiments, laboratories, 
and field sites, but they are still untried in scientific 
research. Furthermore, even the most advanced foun-
dation models can currently perform only 600 dif-
ferent tasks, which may be insufficient in a bioenergy 
research paradigm. Given their proven potential for 
easy customization once trained and their general ver-
satility, foundation models warrant more research to 
explore how they can be used to support autonomous 
operation. 

In existing automated or basic autonomous experi-
ments, the inclusion of specialized scientific knowledge 
is key to successful AI/ML solutions. This knowledge 
goes beyond what is included in data and requires the 
explicit incorporation of foundational scientific princi-
ples and tacit expert knowledge (e.g., for sample prepa-
ration). To scale up such efforts, the community must 
develop methods for knowledge capture that are more 
efficient, more robust, and better directed. 

AI/ML-ready data will be key to advancing the impact 
of AI/ML in the field of biology. BER, with its signifi-
cant enabling infrastructure of experimental and com-
putational facilities, could create data ready for AI/ML 
training at the needed scale (e.g., to facilitate training 
of new foundation models). Clear definitions, bench-
marks, and standards will be needed to determine 
which metadata, provenance, data preparation, and 
other techniques will enable data to be easily utilized 
in AI/ML training without resource-intensive data 
identification, cleaning, or preparation. 

However, gathering sufficient training data will be 
impossible in some situations. Consequently, new 
AI/ML models that can cope with little training data 
must be developed, along with methods to create more 
information-rich training input. This active research 

field requires more investments and robust testing of 
new methods. 

Many settings in autonomous experimentation and 
observation will require embedding AI/ML models in 
edge computing devices with limited computational 
capabilities (e.g., instruments, sensors, and drones). 
This integration will require developing compact 
AI/ML models that have capabilities similar to larger 
models but use less computing power. Furthermore, 
many edge devices, particularly those in the field, have 
limited network connectivity, making upgrades and 
retraining difficult. New methods are needed to enable 
unsupervised in situ retraining of these compact 
AI/ML models while maintaining their quality and 
correctness. 

Finally, BER- and BETO-supported biologists must 
be able to trust the AI/ML solutions they wish to 
deploy. Therefore, developing robust, reproducible, 
and explainable models is important. All three qual-
ities are being actively researched, but significant 
progress is needed to achieve easy-to-use, standard-
ized approaches that can be integrated broadly in all 
AI/ML solutions.

5.3 Application Challenges
AI/ML could help address BER and BETO application 
areas facing scientific and technical challenges. Some 
of these challenges are specific, while others are more 
general and crosscutting. 

General challenges include associating genotype with 
phenotype and elucidating relationships between 
biological components. High-throughput phenotypic 
measurements are only possible in very few cases, and 
substantial genotype data is often not available for 
the systems seeking phenotype prediction. Forward 
phenotype prediction may uncover missing biological 
knowledge, whereas inverse design (i.e., designing to 
achieve a particular specification) uncovers design 
principles and additional gaps in biology and is perhaps 
a more compelling goal. Approaches are  needed that 
use integrated datasets to elucidate biological relation-
ships leading to testable hypotheses.
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Domain-specific challenges include:

•  Engineering enzymes with specified kinetics, sub-
strate specificity, and other properties. 

•  Engineering microbial communities in situ and at 
scale for pathogen protection; carbon sequestra-
tion; community stability; carbon dioxide (CO2) 
and water cracking; nitrogen fixation; stress pro-
tection (e.g., drought); nutrient mobilization; 
hydrogen, phosphate, and carbon cycling; and 
closed-loop, energy-efficient regenerative biopro-
duction using waste or C1 feedstocks.

•  Characterizing microbial gene-environment inter-
actions effectively, which is prerequisite to foun-
dational understanding, prediction, and inverse 
design, including microenvironments within 
bioreactors. 

•  Improving bioreactor performance for bioprocess 
scale-up. Optimizing fermentations could be pur-
sued through a variety of approaches, including 
changing feedstock injection sites, redesigning 
vessels to improve mixing and mass transfer, adding 
sensing methods that are easier to interpret and act 
upon, and leveraging microbial population hetero-
geneity to improve process robustness. 

•  Scaling bioprocess information to better inform 
laboratory-scale experiments since many biopro-
cess developers lack regular access to pilot, let alone 
industrial, scales. 

•  Engineering plants to: create specific transcrip-
tional levels or transcriptional circuits, implement 
metabolic pathways within chloroplasts, enhance 
stress resistance (e.g., to pathogens, drought, or 
other environmental factors), redesign photosyn-
thesis, achieve nitrogen-fixing endosymbiosis, 
improve crops for animal agriculture, achieve a 
foundational understanding of plant develop-
ment including interactions at the tissue level, 
predict how a plant will perform under different 
environmental conditions, sequester CO2, and 
integrate plant biology with climate and economic 
modeling.

5.4 Workforce Development, 
Diversity, Outreach, and 
Social Responsibility
Data-driven design of biological systems represents 
an emerging paradigm in basic and applied biological 
research. Currently, few bioenergy researchers are well-
versed in both AI/ML and biology. Therefore, encour-
aging and facilitating research collaborations between 
computational scientists and biologists is important, 
along with training a new generation of scientists to 
develop and apply AI/ML tools to long-standing sci-
entific challenges in bioenergy research.

Workshop participants discussed community devel-
opment issues related to education, outreach, work-
force development, partnerships with other funding 
agencies, and social responsibilities and ethics (see 
Appendix C: Breakout Session Assignments, p. 38). 
The session opened with two talks: “Applying a 
Human-Centered Design Approach for AI/ML Edu-
cational Outreach” and “Charting a Course for a Resil-
ient and Competitive Future—Bioeconomy Strategy 
Engagement and Recommendations for Training.” The 
talks provided valuable recommendations from related 
efforts and potential leverageable strategies, including 
the Task Force on Synthetic Biology and the Bioecon-
omy at Schmidt Futures. Key takeaways compiled from 
participant breakout groups are described below. 

Workforce Development
Participants were deeply engaged in conversations on 
education, training, and workforce development. Sim-
ilar key themes emerged in multiple breakout groups, 
including building an interdisciplinary workforce, 
ensuring workforce diversity and inclusiveness, and 
creatively engaging the public. The breakout group on 
workforce development discussed how to train the 
workforce to become synergistic with AI/ML and 
how to encourage established, senior professionals to 
welcome new technology. Two main challenges that 
emerged from discussions were competition to retain 
data scientists and engineers and the need for an inter-
disciplinary workforce. 
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Competing with the private sector for a highly trained 
workforce is another challenge potentially attributable 
to salary, impact, job stability, and professional growth 
opportunities. Industry may be perceived as having 
more impact than government and academia and as 
being more related to real-world challenges as, for 
example, the AI/ML industry increasingly publishes 
open-source tools. Other distinctions between indus-
try and academia are the current incentive mechanisms 
for principal investigators and faculty and what might 
be most appropriate for data scientists and engineers. 

Another primary topic of discussion was creating an 
interdisciplinary workforce. Most graduate students 
and postdocs currently working in bioenergy research 
are unfamiliar with AI/ML algorithms and automa-
tion and the kinds of problems AI/ML can solve. A 
lack of understanding of different types of model- 
derived knowledge can limit researchers moving into 
ML-driven bioenergy research from non-ML fields. 
Conversely, graduate students and postdocs who are 
experts in AI/ML are not necessarily familiar with 
the major scientific challenges related to bioenergy 
research. 

Overcoming these knowledge and skill gaps and train-
ing a new generation of scientists well-versed in both 
AI/ML and biology require making AI/ML more 
accessible to biological experimentalists and recruit-
ing talented computational scientists to bioenergy 
research. DOE can create targeted opportunities for 
collaboration and cross-training. Examples include 
hackathons, CASP-like competitions, kaggle com-
petitions, protein design competitions, or “protein- 
paloozas” to encourage collaboration between 
biologists and computer scientists. Participants also 
discussed training opportunities to overcome knowl-
edge and skill gaps, including 1- to 2-year postbacca-
laureate programs, flexible certificates similar to MBA 
programs, and internship opportunities. In addition, 
effort is needed to excite researchers about AI/ML 
potential and motivate them to enter their data into 
databases. Finally, communication of common stan-
dards among researchers is needed to ensure proper 
and rigorous model validation standards. 

Strategies to build a more interdisciplinary workforce 
involve: (1) increasing incentives for interdisciplinary 
research and team-based science, including funding 
mechanisms for computational and experimental sci-
entists; (2) building more transdisciplinary research 
centers and training opportunities; and (3) gaining 
recognition from funders. To engage computer scien-
tists with bioenergy research, participants suggested 
more cross-training opportunities, additional funding 
mechanisms for data scientists, and increased recog-
nition of deep knowledge in computational and engi-
neering areas. 

Diversity
Workforce breakout group participants also focused on 
ways to ensure diversity and inclusiveness in the devel-
oping workforce, noting that diversity is especially poor 
in computational areas. Multiple strategies to increase 
diversity include: (1) adopting better, more inclusive 
hiring practices; (2) developing mechanisms to support 
partnerships with minority-serving institutions (MSIs); 
(3) offering more targeted summer research oppor-
tunities for undergraduate students from MSIs and 
historically black colleges and universities; (4) ensuring 
diverse representation at meetings and workshops; 
(5) connecting with rural communities, including land 
grant universities and extension scientists; and (6) cre-
ating additional internship opportunities. 

Outreach
Four main themes emerged from the outreach break-
out group, several of which synergize with the diver-
sity discussion. First, early inclusion of biology and 
computational science into students’ education paths 
is important. More programs that ease student access 
to curricula (e.g., industry internships and iCLEM) 
are needed at the high school and college levels. Early 
introduction to interdisciplinary training between 
computational science and biology will enable greater 
access to AI/ML in bioenergy research. Additionally, 
creative activities like AlphaFold games will engage 
and broaden participation. 

Second, participants discussed the lack of student 
funding for nonmedical biotechnology training 
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programs. Biology-related internships are difficult to 
scale and are comparatively expensive. A potential 
solution is to create engaging virtual programs that 
provide students with hands-on experience when 
in-person opportunities are unavailable. 

Third, participants recommended using better metrics  
to incentivize outreach efforts, suggesting the impor-
tance of tracking science impact in ways other than 
just number of publications. Number of citations, such 
as for datasets, could be another metric of success. 
Faculty could also support additional mentees or help 
promote the field in other ways. 

Finally, participants discussed the implications of public 
misconceptions of bioenergy research, such as geneti-
cally modified organisms (GMOs). Using spokespeople 
to help communicate the benefits of nonmedical bio-
tech would help dispel myths. Social media platforms 
are good avenues to disseminate interesting work in 
the field. 

Social Responsibility and Ethics
The social responsibility and ethics breakout partic-
ipants also discussed misconceptions and disinfor-
mation in the public domain, along with potential 
outreach efforts to better inform people about the 
field and publicly funded efforts. An emphasis on crit-
ical thinking and risk-benefit trade-off analysis could 
be accomplished by (1) creating training materials 
and activities that bridge AI/ML, biosecurity, and 
research communities; (2) ensuring that materials 
resonate with the community (i.e., what is the impact 
on health and employment); (3) increasing researcher 
engagement with professional creatives (e.g., writ-
ers) to develop interesting and accurate narratives; 
(4) providing small supplemental funding mechanisms 
to attract professional creatives to produce new forms 
of content; and (5) including social and ethical consid-
erations in agency reports for policy-makers. 

Participants also discussed the importance of diver-
sity, equity, inclusion, and accessibility (DEIA) in 

workforce development. At all educational levels 
(vocational, undergraduate, and graduate), programs 
and training opportunities are needed that combine 
biology with computer science or applied mathemat-
ics. One approach that can scale quickly is a hybrid 
training environment that provides most materials 
online (e.g., videos, standard operating procedures, 
and quizzes) while also offering hands-on experience. 
In addition, industry engagement is key to building 
new, more inclusive collaboration models such as 
internships and visiting positions. 

When considering DEIA, participants also explored 
how to identify real versus perceived risk in applying 
AI/ML to biotechnology. Three suggestions were 
discussed. First, mechanisms should be developed 
to screen potentially harmful cases early. Identifying 
risks and risk tolerance at an early stage can constrain 
research but defining risks and mitigation strategies 
is critically important. Considering the potential dual 
use of technologies might also be helpful. Second, 
biosecurity tools (e.g., environmental sequencing 
for pathogen detection) should be developed and 
used to assess ecological risks of environmentally 
deployed GMOs and engage regulators and the pub-
lic on rational risk analysis and governance. Finally, 
transparency, care, and caution should be pillars that 
guide the impacts of biotechnology applications. This 
is especially critical in ethically dubious applications 
such as explosives or narcotics production.

Finally, this breakout group considered ways to equita-
bly distribute the benefits and risks of technology. One 
key suggestion was to distribute biomanufacturing, 
especially jobs, where the raw materials are sourced 
(e.g., in the agricultural Midwest). Also critical for 
equitable benefit distribution is considering the geog-
raphy of next-generation feedstocks, including agricul-
ture, forestry, municipal wastes, and C1s. This model 
will require both capital infrastructure build-out and 
local workforce training for biomanufacturing jobs. 
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Recent advances in computing and data analytics have resulted in powerful artificial intelligence and 
machine learning (AI/ML) techniques with significant potential for use in biotechnology and broader 
genomics-based research. These techniques combined with advances in automation in the laboratory offer 
the ability to rapidly accelerate the design and optimization of biological systems and processes for a variety 
of DOE mission needs in energy and the environment.

A previous joint BER-BETO workshop in April 2021, “Designing for Deep Decarbonization: Accelerating the 
U.S. Bioeconomy,” identified several areas within the transportation, industry, and agricultural sectors within 
the U.S. economy where advances in biotechnology were poised to make significant contributions (DOE 
2021a). The Biological and Environmental Research (BER) program within DOE’s Office of Science (SC) 
and the Bioenergy Technology Office (BETO) within DOE’s Office of Energy Efficiency and Renewable 
Energy (EERE) have an interest in accelerating the pace of development and transition of biotechnology 
solutions out to industry as part of an overall strategy to promote a globally competitive U.S. bioeconomy. 

Building on the previous workshop, the AI/ML for Bioenergy Research (AMBER) workshop should explore 
the integration of AI/ML techniques within genomics-enabled basic and applied science and biodesign for 
optimization of biological systems and processes (a fully automated laboratory system to accelerate iterative 
design-build-test-learn systems) and toward advancing biomanufacturing. The use of AI/ML within an auto-
mated laboratory affords the ability for iterative learning that builds on previous data collection and character-
istics of the chassis organism (microbe or plant) to accelerate the optimization and design of new metabolic 
processes for the production of desirable products and/or new functions. The pairing of AI/ML techniques 
with automated instrumentation could lead to significant improvements not only in the more rapid design and 
optimization of engineered organisms but also, if applied broadly, in the potential to change scientific investi-
gation in general.

The AMBER workshop should specifically focus on the broader scientific potential and immediate applica-
tions of integrated AI/ML systems with automation in the laboratory. Workshop participants should be tasked 
with assessing the potential for AI/ML systems to advance the understanding of biology in general, how 
integration of AI/ML techniques with automation in the laboratory could accelerate the design of biological 
systems and optimize biomanufacturing, what data and compute infrastructure would be needed in such sys-
tems, and what expertise and workforce development efforts would be needed to shift toward these systems 
within the broader science. We anticipate the recruitment of a broad and diverse group of participants that 
would bring multidisciplinary expertise and knowledge to this effort. The participants would have expertise 
with applications in AI/ML (related to areas of genomics, protein/structure prediction, imaging, synthetic 
biology, lab automation and bioprocess development), data resource needs, and expertise in the areas of plant 
and microbial systems (with experts outside these systems to be invited to bring in additional perspectives).

Department of Energy
Washington, D.C.
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As the growth of more sophisticated AI/ML models, fueled by the availability of ever larger datasets within 
the DOE infrastructure, enables more automated analyses through the use of robotics, the stage is set for 
potentially game-changing approaches to scientific investigation. The integration of AI/ML techniques with 
automated experimentation offers powerful new approaches to research that not only take better advantage of 
previous research results and data but iteratively build on and learn from new information generated within 
these envisioned approaches to science. In addition to experimental design approaches, AI/ML can have 
immediate impacts on bioprocess design for biomanufacturing as it is industrially practiced through more 
precise control of conditions in bioreactors. These discussions are very important across both SC and EERE 
programs as DOE looks to take advantage of breakthroughs in data science within a scientific complex rich in 
computational and experimental capabilities. 

We are excited about the workshop attendees sharing their thoughts, expertise, and imagination during the 
AMBER workshop discussions and look forward to exciting times ahead for biological science and biotech-
nology development where DOE plays an important and leading role.

Sincerely,

R. Todd Anderson
Director, Biological Systems Science Division
Biological and Environmental Research program
Office of Science 

Jay Fitzgerald
Chief Scientist
Bioenergy Technologies Office 
Office of Energy Efficiency and Renewable Energy
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Workshop Agenda
Appendix B

August 23–25, 2022
All times Eastern

August 23, 2022
Session 1: Workshop Goals and Introduction to Artificial Intelligence/Machine Learning 

12:00 p.m.   Welcome and Opening

    Welcome Huimin Zhao (University of Illinois, 
Urbana-Champaign)

 Opening Remarks, Motivation, Background R. Todd Anderson (U.S. Depart-
ment of Energy), Jay Fitzgerald 
(U.S. Department of Energy)

   Objectives and Structure Huimin Zhao

12:30 p.m.   Introduction into AI for Biology Moderator: R. Todd Anderson

Advanced Research Directions in AI for Science, 
Energy, and Security 

Rick Stevens (Argonne National 
Laboratory)

1:10 p.m.  Break

1:35 p.m.  Opportunities and Challenges in Emerging AI/ML-enabled Bioenergy Research
Short Talks and Panel Discussion

Structuring Data for Statistical Learning

Opportunities and Challenges in Emerging 
AI/ML-Enabled Bioenergy

Recent Advances of AI for Biology and 
Biotechnology

Moderator: Kerstin Kleese 
van Dam (Brookhaven National 
Laboratory)

Kjiersten Fagnan (DOE Joint Genome 
Institute)

Dmitry Grapov (Amyris)

Marinka Zitnik (Harvard University)

2:35 p.m.  Elevator Pitch Presentations Moderator: Nathan Hillson 
(Lawrence Berkeley National 
Laboratory) 

4:05 p.m.  Concluding Notes from Day 1 Huimin Zhao 
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August 24, 2022
Session 2: Defining Focus on Applications of AI/ML for Bioenergy Research 

12:00 p.m.  Opening Remarks Huimin Zhao, Deepti Tanjore 
(Lawrence Berkeley National 
Laboratory) 

12:05 p.m.  Presentations and Q&A

AI- and XAI-Driven Systems Biology

Taking the Cellular Perspective: A Multiscale, 
Computation-Driven Approach to Bioprocess 
Design, Operation, and Optimization

Moderator: Deepti Tanjore

Daniel Jacobson (Oak Ridge National 
Laboratory)

Cees Haringa (Delft University of 
Technology)

12:35 p.m.  Breakout Groups Moderator: Huimin Zhao

2-1 AI/ML Applications – Biology (Microbe/Microbiome)

2-2 AI/ML Applications – Biology (Plant)

2-3 AI/ML Applications – Biodesign (Microbe/Microbiome)

2-4 AI/ML Applications – Biodesign (Plant)

2-5 AI/ML Applications – Process

2:05 p.m.  Break

2:30 p.m.  Report Out Moderator: Deepti Tanjore 

Session 3: AI/ML Approaches to Meet Bioenergy Research Needs

3:15 p.m.  Opening Remarks Deepti Tanjore 

3:20 p.m.  Presentations and Q&A Moderator: Kerstin Kleese van Dam 

Mathematically-Based AI/ML to Guide and 
Analyze Experiments: Autonomous Self-Driving 
Labs, Complex Inversion, and Reconstruction 
from Limited Scientific Data

Integrated Mechanistic and AI/ML Approach 
for Bioenergy

James Sethian (University of 
California, Berkeley)

Frank Alexander (Brookhaven 
National Laboratory)

3:50 p.m.  Breakout Groups Moderator: Huimin Zhao 

3-1 AI/ML Approaches

3-2 AI/ML Approaches

3-3 AI/ML Approaches

3-4 AI/ML Approaches

3-5 AI/ML Approaches

5:20 p.m.  Break

5:45 p.m.  Report Outs Moderator: Kerstin Kleese van Dam

6:30 p.m.  Concluding Notes Day 2 Kerstin Kleese van Dam 
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August 25, 2022
Session 4: Data and Compute Infrastructure Needed

12:00 p.m.  Opening Remarks Nathan Hillson 

12:05 p.m.  Presentations and Q&A Moderator: Nathan Hillson 

Data and Compute Infrastructure Needed for 
AI/ML in Bioenergy Research

ML for CRISPR Genome Editing: A Case Study for 
Enhanced Methods in Agricultural Genetics

Héctor García Martin (Lawrence 
Berkeley National Laboratory)

Matt Hudson (University of Illinois, 
Urbana-Champaign)

12:35 p.m.  Breakout Groups Moderator: Kerstin Kleese van Dam 

4-1 Data and Compute Infrastructure – Large-Scale Experimental Facilities

4-2 Data and Compute Infrastructure – Automation

4-3 Data and Compute Infrastructure – Laboratory-Based Research

4-4 Data and Compute Infrastructure – Computational Science

4-5 Data and Compute Infrastructure – Biological System Design and Control

2:05 p.m.  Preparation for Report Out

2:30 p.m.  Report Outs Moderator: Kerstin Kleese van Dam 

Session 5: Community Development Including Outreach, Engagement, and Training

3:15 p.m.  Opening Remarks Huimin Zhao

3:20 p.m.  Presentations and Q&A

Applying a Human-Centered Design Approach 
for AI/ML Educational Outreach

Charting a Course for a Resilient and Competi-
tive Future: Bioeconomy Strategy Engagement 
and Recommendations for Training

Moderator: Huimin Zhao

Rachel Switzky (University of Illinois, 
Urbana-Champaign)

Mary Maxon (Schmidt Futures)

4:10 p.m.  Breakout Groups Moderator: Huimin Zhao 

5-1 Community Development – Education

5-2 Community Development – Outreach

5-3 Community Development – Workforce Development

5-4 Community Development – Partnerships with Other Funding Agencies

5-5 Community Development – Social Responsibilities/Ethics

5:10 p.m.  Break

5:35 p.m.  Report Outs Moderator: Huimin Zhao

6:05 p.m.  Concluding Notes Day 3 Huimin Zhao 

6:10 p.m.  Workshop Co-chairs Meeting
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Session 2: AI/ML Applications
2-1 Biology: Microbe/Microbiome
Adam Arkin, group leader
Lawrence Berkeley National Laboratory

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Kjiersten Fagnan
DOE Joint Genome Institute

Ee-Been Goh
Zymergen, Inc.

Kerstin Kleese van Dam
Brookhaven National Laboratory

Shinjae Yoo
Brookhaven National Laboratory

Mary Maxon
Schmidt Futures

Arvind Ramanathan
Argonne National Laboratory

Rick Stevens
Argonne National Laboratory

Dawn Adin, observer
U.S. Department of Energy

Wayne Kontur, observer
U.S. Department of Energy 

2-2 Biology: Plant
Sue Rhee, group leader
Carnegie Institution for Science

Arti Singh, group leader
Iowa State University

Kristofer Bouchard
Lawrence Berkeley National Laboratory

Mary J. Dunlop
Boston University 

Daniel Jacobson
Oak Ridge National Laboratory

Lee Ann McCue
Pacific Northwest National Laboratory

Carlos Soto
Brookhaven National Laboratory

Marinka Zitnik
Harvard University

Resham Kulkarni, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Catherine Ronning, observer
U.S. Department of Energy

2-3 Biodesign: Microbe/Microbiome
Héctor García Martin, group leader
Lawrence Berkeley National Laboratory

Dmitry Grapov
Amyris

Lydia Kavraki
Rice University

Nina Lin
University of Michigan

Christopher Long
Ginkgo Bioworks, Inc.

Costas Maranas
The Pennsylvania State University

Chris Mungall
Lawrence Berkeley National Laboratory

Peter St. John
National Renewable Energy Laboratory

Huimin Zhao
University of Illinois, Urbana-Champaign

R. Todd Anderson, observer
U.S. Department of Energy

Boris Wawrik, observer
U.S. Department of Energy

2-4 Biodesign: Plant
Shin-Han Shiu, group leader
Michigan State University

Frank Alexander
Brookhaven National Laboratory
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Qun Liu
Brookhaven National Laboratory

Baskar Ganapathysubramanian
Iowa State University

Nathan Hillson
Lawrence Berkeley National Laboratory

James Sethian
University of California, Berkeley 

Matthew Hudson
University of Illinois, Urbana-Champaign

Rachel Switzky
University of Illinois, Urbana-Champaign

Neeraj Kumar
Pacific Northwest National Laboratory

Pablo Rabinowicz, observer
U.S. Department of Energy

Amy Swain, observer
U.S. Department of Energy 

2-5 Process
Cees Haringa, group leader
Delft University of Technology

Gyorgy Babnigg
Argonne National Laboratory

Ben Brown
Lawrence Berkeley National Laboratory

Deepti Tanjore
Lawrence Berkeley National Laboratory

Corey Hudson
Sandia National Laboratories

Adam Perer
Carnegie Mellon University

Gina Tourassi
Oak Ridge National Laboratory

Bobbie-Jo Webb-Robertson
Pacific Northwest National Laboratory

Gayle Bentley, observer
U.S. Department of Energy

Jay Fitzgerald, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy

Session 3: AI/ML Approaches
3-1 AI/ML Approaches
Arvind Ramanathan, group leader
Argonne National Laboratory

Adam Arkin
Lawrence Berkeley National Laboratory

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Kjiersten Fagnan
DOE Joint Genome Institute

Ee-Been Goh
Zymergen, Inc.

Kerstin Kleese van Dam
Brookhaven National Laboratory

Mary Maxon
Schmidt Futures

Rick Stevens
Argonne National Laboratory

Shinjae Yoo
Brookhaven National Laboratory

Dawn Adin, observer
U.S. Department of Energy

Wayne Kontur, observer
U.S. Department of Energy

3-2 AI/ML Approaches
Carlos Soto, group leader 
Brookhaven National Laboratory

Kristofer Bouchard 
Lawrence Berkeley National Laboratory

Mary J. Dunlop
Boston University

Daniel Jacobson
Oak Ridge National Laboratory

Lee Ann McCue
Pacific Northwest National Laboratory

Sue Rhee
Carnegie Institution for Science

Arti Singh
Iowa State University
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Marinka Zitnik
Harvard University

Resham Kulkarni, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Catherine Ronning, observer 
U.S. Department of Energy

3-3 AI/ML Approaches
Costas Maranas, group leader 
The Pennsylvania State University

Héctor García Martin
Lawrence Berkeley National Laboratory

Chris Mungall
Lawrence Berkeley National Laboratory

Dmitry Grapov
Amyris

Lydia Kavraki
Rice University

Nina Lin
University of Michigan

Christopher Long
Ginkgo Bioworks, Inc.

Peter St. John
National Renewable Energy Laboratory

Huimin Zhao
University of Illinois, Urbana-Champaign

R. Todd Anderson, observer
U.S. Department of Energy

Boris Wawrik, observer
U.S. Department of Energy

3-4 AI/ML Approaches 
Neeraj Kumar, group leader
Pacific Northwest National Laboratory

Frank Alexander
Brookhaven National Laboratory

Qun Liu
Brookhaven National Laboratory

Baskar Ganapathysubramanian
Iowa State University

Nathan Hillson
Lawrence Berkeley National Laboratory

James Sethian
University of California, Berkeley 

Matthew Hudson
University of Illinois, Urbana-Champaign

Rachel Switzky
University of Illinois, Urbana-Champaign

Shin-Han Shiu
Michigan State University

Pablo Rabinowicz, observer
U.S. Department of Energy

Amy Swain, observer
U.S. Department of Energy

3-5 AI/ML Approaches 
Ben Brown, group leader
Lawrence Berkeley National Laboratory

Gyorgy Babnigg
Argonne National Laboratory

Cees Haringa
Delft University of Technology

Corey Hudson
Sandia National Laboratories

Adam Perer
Carnegie Mellon University

Deepti Tanjore
Lawrence Berkeley National Laboratory

Gina Tourassi
Oak Ridge National Laboratory

Bobbie-Jo Webb-Robertson
Pacific Northwest National Laboratory

Gayle Bentley, observer
U.S. Department of Energy

Jay Fitzgerald, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy
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Session 4: Data and  
Compute Infrastructure 
4-1 Large-Scale Experimental Facilities 
Lee Ann McCue, group leader
Pacific Northwest National Laboratory

Matthew Hudson
University of Illinois, Urbana-Champaign

Rachel Switzky
University of Illinois, Urbana-Champaign

Daniel Jacobson
Oak Ridge National Laboratory

Gina Tourassi
Oak Ridge National Laboratory

Kerstin Kleese van Dam
Brookhaven National Laboratory

James Sethian
University of California, Berkeley 

Arti Singh
Iowa State University

Rick Stevens
Argonne National Laboratory

R. Todd Anderson, observer
U.S. Department of Energy

Amy Swain, observer
U.S. Department of Energy

4-2 Automation 
Ben Brown, group leader
Lawrence Berkeley National Laboratory

Shinjae Yoo, group leader
Brookhaven National Laboratory

Gyorgy Babnigg
Argonne National Laboratory

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Qun Liu
Brookhaven National Laboratory

Ee-Been Goh
Zymergen, Inc.

Dmitry Grapov
Amyris

Mary Maxon
Schmidt Futures

Arvind Ramanathan
Argonne National Laboratory

Resham Kulkarni, observer
U.S. Department of Energy

Boris Wawrik, observer
U.S. Department of Energy

4-3 Laboratory-Based Research
Bobbie-Jo Webb-Robertson, group leader
Pacific Northwest National Laboratory

Mary J. Dunlop
Boston University

Corey Hudson
Sandia National Laboratories

Costas Maranas
The Pennsylvania State University

Adam Perer
Carnegie Mellon University

Sue Rhee
Carnegie Institution for Science

Shin-Han Shiu
Michigan State University

Huimin Zhao
University of Illinois, Urbana-Champaign

Marinka Zitnik
Harvard University

Gayle Bentley, observer
U.S. Department of Energy

Catherine Ronning, observer
U.S. Department of Energy

4-4 Computational Science
Chris Mungall, group leader
Lawrence Berkeley National Laboratory

Frank Alexander
Brookhaven National Laboratory 

Carlos Soto
Brookhaven National Laboratory

Kjiersten Fagnan
DOE Joint Genome Institute
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Baskar Ganapathysubramanian
Iowa State University

Nathan Hillson
Lawrence Berkeley National Laboratory

Lydia Kavraki
Rice University

Peter St. John
National Renewable Energy Laboratory

Dawn Adin, observer
U.S. Department of Energy

Wayne Kontur, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy

4-5 Biological System Design and Control
Héctor García Martin, group leader
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Acronyms and Abbreviations
Appendix F

AI artificial intelligence

AMBER  Artificial Intelligence and Machine 
Learning for Bioenergy Research

BER  DOE Biological and Environmental 
Research program

BETO DOE Bioenergy Technologies Office

BioBERT  Bidirectional Encoder Representations 
from Transformers for Biomedical 
Text Mining 

bpsA blue-pigment synthetase gene

C1 compounds one-carbon molecules

CABBI  DOE’s Center for Advanced Bioenergy 
and Bioproducts Innovation

Cas CRISPR-associated protein

CNN convolutional neural network

CO2 carbon dioxide

COVID-19 coronavirus disease 2019

CRISPR  clustered regularly interspaced short 
palindromic repeats

DBTL design-build-test-learn cycle

DEIA  diversity, equity, inclusion, and 
accessibility

DOE U.S. Department of Energy

DNABERT  Bidirectional Encoder Representations 
from Transformers for DNA sequence 
analysis

DSP downstream processing

ECNet   evolutionary context-integrated 
neural network

EERE  DOE Office of Energy Efficiency 
and Renewable Energy

ENDURABLE  Benchmark Datasets and AI/ML 
Models with Queryable Metadata

FAIR  findable, accessible, interoperable, 
reusable

galK galactokinase gene

GCN graph convolutional network

GEM genome-scale metabolic model

GeneBERT  Bidirectional Encoder Representations 
from Transformers for gene 
regulatory analysis

GLaM Google’s Generalist Language Model

glnA glutamine synthetase gene

GMO genetically modified organism

GPT Generative Pre-Trained Transformer

HPC high-performance computing

iCLEM  Introductory College-Level Experience 
in Microbiology

LaMDA  Google’s Language Model for 
Dialogue Applications

LLM large language model

MAC Metabolic Allele Classifier

ML machine learning

MSI minority-serving institution

NLP natural language processing

NMDC  National Microbiome Data 
Collaborative

NSLS-II  Brookhaven National Laboratory’s 
National Synchrotron Light Source II

NVBL  National Virtual Biotechnology 
Laboratory

PaLM Google’s Pathways Language Model

SC DOE Office of Science

TRL technology readiness level

UCB upper confidence bound




